7 resultados para Nano-imprint
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The absence of rapid, low cost and highly sensitive biodetection platform has hindered the implementation of next generation cheap and early stage clinical or home based point-of-care diagnostics. Label-free optical biosensing with high sensitivity, throughput, compactness, and low cost, plays an important role to resolve these diagnostic challenges and pushes the detection limit down to single molecule. Optical nanostructures, specifically the resonant waveguide grating (RWG) and nano-ribbon cavity based biodetection are promising in this context. The main element of this dissertation is design, fabrication and characterization of RWG sensors for different spectral regions (e.g. visible, near infrared) for use in label-free optical biosensing and also to explore different RWG parameters to maximize sensitivity and increase detection accuracy. Design and fabrication of the waveguide embedded resonant nano-cavity are also studied. Multi-parametric analyses were done using customized optical simulator to understand the operational principle of these sensors and more important the relationship between the physical design parameters and sensor sensitivities. Silicon nitride (SixNy) is a useful waveguide material because of its wide transparency across the whole infrared, visible and part of UV spectrum, and comparatively higher refractive index than glass substrate. SixNy based RWGs on glass substrate are designed and fabricated applying both electron beam lithography and low cost nano-imprint lithography techniques. A Chromium hard mask aided nano-fabrication technique is developed for making very high aspect ratio optical nano-structure on glass substrate. An aspect ratio of 10 for very narrow (~60 nm wide) grating lines is achieved which is the highest presented so far. The fabricated RWG sensors are characterized for both bulk (183.3 nm/RIU) and surface sensitivity (0.21nm/nm-layer), and then used for successful detection of Immunoglobulin-G (IgG) antibodies and antigen (~1μg/ml) both in buffer and serum. Widely used optical biosensors like surface plasmon resonance and optical microcavities are limited in the separation of bulk response from the surface binding events which is crucial for ultralow biosensing application with thermal or other perturbations. A RWG based dual resonance approach is proposed and verified by controlled experiments for separating the response of bulk and surface sensitivity. The dual resonance approach gives sensitivity ratio of 9.4 whereas the competitive polarization based approach can offer only 2.5. The improved performance of the dual resonance approach would help reducing probability of false reading in precise bio-assay experiments where thermal variations are probable like portable diagnostics.
Resumo:
We report the observation of urchin-like nanostructures consisting of high-density spherical nanotube radial arrays of vanadium oxide nanocomposite, successfully synthesized by a simple chemical route using an ethanolic solution of vanadium tri-isopropoxide and alkyl amine hexadecylamine for 7 days at 180oC. The results show that the growth process of the NanoUrchin occurs in stages, starting with a radial self-organized arrangement of lamina followed by the rolling of the lamina into nanotubes. The longest nanotubes are measured to be several micrometers in length with diameters of ~120 nm and hollow centers typically measured to be ~75 nm. The NanoUrchin have an estimated density of nanotubes of ~40 sr-1. The tube walls comprise layers of vanadium oxide with the organic surfactant intercalated between atomic layers. The interlayer distance is measured to be 2.9 ± 0.1 nm and electron diffraction identified the vanadate phase in the VOx nanocomposite as orthorhombic V2O5. These nanostructures may be used as three-dimensional composite materials and as supports for other materials.
Resumo:
The work presented in this thesis described the development of low-cost sensing and separation devices with electrochemical detections for health applications. This research employs macro, micro and nano technology. The first sensing device developed was a tonerbased micro-device. The initial development of microfluidic devices was based on glass or quartz devices that are often expensive to fabricate; however, the introduction of new types of materials, such as plastics, offered a new way for fast prototyping and the development of disposable devices. One such microfluidic device is based on the lamination of laser-printed polyester films using a computer, printer and laminator. The resulting toner-based microchips demonstrated a potential viability for chemical assays, coupled with several detection methods, particularly Chip-Electrophoresis-Chemiluminescence (CE-CL) detection which has never been reported in the literature. Following on from the toner-based microchip, a three-electrode micro-configuration was developed on acetate substrate. This is the first time that a micro-electrode configuration made from gold; silver and platinum have been fabricated onto acetate by means of patterning and deposition techniques using the central fabrication facilities in Tyndall National Institute. These electrodes have been designed to facilitate the integration of a 3- electrode configuration as part of the fabrication process. Since the electrodes are on acetate the dicing step can automatically be eliminated. The stability of these sensors has been investigated using electrochemical techniques with excellent outcomes. Following on from the generalised testing of the electrodes these sensors were then coupled with capillary electrophoresis. The final sensing devices were on a macro scale and involved the modifications of screenprinted electrodes. Screen-printed electrodes (SPE) are generally seen to be far less sensitive than the more expensive electrodes including the gold, boron-doped diamond and glassy carbon electrodes. To enhance the sensitivity of these electrodes they were treated with metal nano-particles, gold and palladium. Following on from this, another modification was introduced. The carbonaceous material carbon monolith was drop-cast onto the SPE and then the metal nano-particles were electrodeposited onto the monolith material
Resumo:
The rapid development of nanotechnology has led to a rise in the large-scale production and commercial use of engineered nano-ZnO. Engineered/manufactured nano-ZnO are applied in a broad range of products such as drugs, paints, cosmetics, abrasive agents and insulators. This can result in the unintended exposure of human beings to nano-ZnO and will inevitably result in the release of nano-ZnO in to the environment. Thus, it is necessary to assess the risk of nano-ZnO to the environment. In this thesis the toxicity of nano-ZnO was analysed using the aquatic, primary producer lesser duckweed (Lemna minor), and the mechanism of toxicity was analysed. Both short-term (one week) and long-term (six weeks) toxicity of nano-ZnO (uncoated) were determined. Results show that the toxicity of nano-ZnO added to the aquatic growth medium increases with increasing concentration and that toxicity accumulates with exposure time. A study of nano-ZnO dissolution reveals that the main reason for nano-ZnO toxicity on Lemna minor is the release of Zn ions. Nano-ZnO dissolution is pH dependent, and toxicity matches the release of Zn2+. Functional coating materials are commonly added to nano-ZnO particles to improve specific industrial applications. To test if coating materials contribute to nano-ZnO toxicity on lesser duckweed, the effect of silane coupling agent (KH550) coated nano-ZnO on Lemma minor was investigated. Results show that coating can decrease the release of Zn ions, which reduces toxicity to Lemna minor, in contrast to uncoated particles. Another commonly hypothesized reason for nano-ZnO toxicity is the formation of Reactive Oxygen Species (ROS) on the particles surface. As part of this thesis, the ROS formation induced by nano-ZnO was studied. Results show that nano-ZnO catalyse ROS formation and this can negatively affect duckweed growth. In conclusion, this work has detailed potentially toxic effects of nano-ZnO on Lemna minor. This study has also provides references for future research, and informs regulatory testing for nanoparticle toxicity. Specifically, the outcomes of this study emphasize the importance of exposure time, environmental parameters and coating material when analysing NPs toxicity. Firstly, impacts of longer exposure time should be studied. Secondly, environmental parameters such as pH and medium-composition need to be considered when investigating NPs toxicity. Lastly, coating of NPs should always be considered in the context of NPs toxicity, and similar NPs with different coatings require separate toxicity tests.
Resumo:
We present a comparative structural–vibrational study of nanostructured systems of V2O5: nano-urchin (VONURs) which are spherical structures composed of a radially oriented array of VOx nanotubes (VOx-NTs) with a volumetric density of ∼40 sr–1, and vanadium oxide nanorods (VOx-NRDs) with an average length of ∼100 nm. The Raman scattering spectrum of the nano-urchin exhibits a band at 1014 cm–1 related to the distorted gamma conformation of the vanadium pentoxide (γ-V5+). The infrared vibrational spectra of the nanorods sample also exhibit a distorted laminar V2O5 structure with evidence observed for quadravalent V4+ species at 921 cm–1.
Resumo:
We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips' broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD's confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates.
Resumo:
A binder-free cobalt phosphate hydrate (Co3(PO4)2·8H2O) multilayer nano/microflake structure is synthesized on nickel foam (NF) via a facile hydrothermal process. Four different concentrations (2.5, 5, 10, and 20 mM) of Co2+ and PO4–3 were used to obtain different mass loading of cobalt phosphate on the nickel foam. The Co3(PO4)2·8H2O modified NF electrode (2.5 mM) shows a maximum specific capacity of 868.3 C g–1 (capacitance of 1578.7 F g–1) at a current density of 5 mA cm–2 and remains as high as 566.3 C g–1 (1029.5 F g–1) at 50 mA cm–2 in 1 M NaOH. A supercapattery assembled using Co3(PO4)2·8H2O/NF as the positive electrode and activated carbon/NF as the negative electrode delivers a gravimetric capacitance of 111.2 F g–1 (volumetric capacitance of 4.44 F cm–3). Furthermore, the device offers a high specific energy of 29.29 Wh kg–1 (energy density of 1.17 mWh cm–3) and a specific power of 4687 W kg–1 (power density of 187.5 mW cm–3).