2 resultados para NO stripping
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis investigates the extent and range of the ocular vocabulary and themes employed by the playwright Thomas Middleton in context with early modern scientific, medical, and moral-philosophical writing on vision. More specifically, this thesis concerns Middleton’s revelation of the substance or essence of outward forms through mimesis. This paradoxical stance implies Middleton’s use of an illusory (theatrical) art form to explore hidden truths. This can be related to the early modern belief in the imagination (or fantasy) as chief mediator between the corporeal and spiritual worlds as well as to a reformed belief in the power of signs to indicate divine truth. This thesis identifies striking parallels between Middleton’s policy of social diagnosis and cure and an increased preoccupation with knowledge of interior man which culminates in Robert Burton’s Anatomy of Melancholy of 1621. All of these texts seek a cure for diseased internal sense faculties (such as fantasy and will) which cause the raging passions to destroy the individual. The purpose of this thesis is to demonstrate how Middleton takes a similar ‘mental-medicinal’ approach which investigates the idols created by the imagination before ‘purging’ the same and restoring order (Corneanu and Vermeir 184). The idea of infection incurred through the eyes which are fixed on vice (or error) has moral, religious, and political implications and discovery of corruption involves stripping away the illusions of false appearances to reveal the truth within whereby disease and disorder can be cured and restored. Finally, Middleton’s use of theatrical fantasy to detect the idols of the diseased imagination can be read as a Paracelsian, rather than Galenic, form of medicine whereby like is ‘joined with their like’ (Bostocke C7r) to restore health.
Resumo:
This thesis explores methods for fabrication of nanohole arrays, and their integration into a benchtop system for use as sensors or anti-counterfeit labels. Chapter 1 gives an introduction to plasmonics and more specifically nanohole arrays and how they have potential as label free sensors compared to the current biosensors on the market. Various fabrication methods are explored, including Focused Ion Beam, Electron Beam Lithography, Nanoimprint lithography, Template stripping and Phase Shift Lithography. Focused Ion Beam was chosen to fabricate the nanohole arrays due to its suitability for rapid prototyping and it’s relatively low cost. In chapter 2 the fabrication of nanohole arrays using FIB is described, and the samples characterised. The fabricated nanohole arrays are tested as bulk refractive index sensors, before a bioassay using whole molecule human IgG antibodies and antigen is developed and performed on the senor. In chapter 3 the fabricated sensors are integrated into a custom built system, capable of real time, multiplexed detection of biomolecules. Here, scFv antibodies of two biomolecules relevant to the detection of pancreatic cancer (C1q and C3) are attached to the nanohole arrays, and detection of their complementary proteins is demonstrated both in buffer (10 nM detection of C1q Ag) and human serum. Chapter 4 explores arrays of anisotropic (elliptical) nanoholes and shows how the shape anisotropy induces polarisation sensitive transmission spectra, in both simulations and fabricated arrays. The potential use of such samples as visible and NIR tag for anti-counterfeiting applications is demonstrated. Finally, chapter 5 gives a summary of the work completed and discusses potential future work in this area.