7 resultados para NEUROMUSCULAR BLOCKADE

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We addressed four research questions, each relating to the training and assessment of the competencies associated with the performance of ultrasound-guided axillary brachial plexus blockade (USgABPB). These were: (i) What are the most important determinants of learning of USgABPB? (ii) What is USgABPB? What are the errors most likely to occur when trainees learn to perform this procedure? (iii) How should end-user input be applied to the development of a novel USgABPB simulator? (iv) Does structured simulation based training influence novice learning of the procedure positively? We demonstrated that the most important determinants of learning USgABPB are: (a) Access to a formal structured training programme. (b) Frequent exposure to clinical learning opportunity in an appropriate setting (c) A clinical learning opporunity requires an appropriate patient, trainee and teacher being present at the same time, in an appropriate environment. We carried out a comprehensive description of the procedure. We performed a formal task analysis of USgABPB, identifying (i) 256 specific tasks associated with the safe and effective performance of the procedure, and (ii) the 20 most critical errors likely to occur in this setting. We described a methodology for this and collected data based on detailed, sequential evaluation of prototypes by trainees in anaesthesia. We carried out a pilot randomised control trial assessing the effectiveness of a USgABPB simulator during its development. Our data did not enable us to draw a reliable conclusion to this question; the trail did provide important new learning (as a pilot) to inform future investigation of this question. We believe that the ultimate goal of designing effective simulation-based training and assessment of ultrasound-guided regional anaesthesia is closer to realisation as a result of this work. It remains to be proven if this approach will have a positive impact on procedural performance, and more importantly improve patient outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The training and ongoing education of medical practitioners has undergone major changes in an incremental fashion over the past 15 years. These changes have been driven by patient safety, educational, economic and legislative/regulatory factors. In the near future, training in procedural skills will undergo a paradigm shift to proficiency based progression with associated requirements for competence-based programmes, valid, reliable assessment tools and simulation technology. Before training begins, the learning outcomes require clear definition; any form of assessment applied should include measurement of these outcomes. Currently training in a procedural skill often takes place on an ad hoc basis. The number of attempts necessary to attain a defined degree of proficiency varies from procedure to procedure. Convincing evidence exists that simulation training helps trainees to acquire skills more efficiently rather than relying on opportunities in their clinical practice. Simulation provides a safe, stress free environment for trainees for skill acquisition, generalization and transfer via deliberate practice. The work described in this thesis contributes to a greater understanding of how medical procedures can be performed more safely and effectively through education. The effect of feedback, provided to novices in a standardized setting on a bench model, based on knowledge of performance was associated with an increase in the speed of skill acquisition and a decrease in error rate during initial learning. The timing of feedback was also associated with effective learning of skill. A marked attrition of skills (independent of the type of feedback provided) was demonstrable 24 hrs after they have first been learned. Using the principles of feedback as described above, when studying the effect of an intense training program on novices of varied years of experience in anaesthesia (i.e. the present training programmes / courses of an intense training day for one or more procedures). There was a marked attrition of skill at 24 hours with a significant correlation with increasing years of experience; there also appeared to be an inverse relationship between years of experience in anaesthesia and performance. The greater the number of years of practice experience, the longer it required a learner to acquire a new skill. The findings of the studies described in this thesis may have important implications for the trainers, trainees and training bodies in the design and implementation of training courses and the formats of delivery of changing curricula. Both curricula and training modalities will need to take account of characteristics of individual learners and the dynamic nature of procedural healthcare.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GABAB receptor is a functional heterodimer comprising the GABAB1 and GABAB2 subunits, with the GABAB1 subunit displaying two major isoforms, GABAB(1a) and GABAB(1b). Preclinical findings have strongly implicated the GABAB receptor in stress-related psychiatric disorders, however, the precise contribution of the GABAB receptor in depression and anxiety disorders remains unknown. Emerging data suggest that the interaction between adverse environmental conditions, such as early life stress, and a specific genetic composition can increase the risk to develop psychiatric disorders in adulthood. This thesis investigated the role of the GABAB receptor alone or in combination with early-life stress (maternal separation), in modulating antidepressant like and anxiety-related behaviours. Pharmacological blockade of the GABAB receptor with CGP52432 had antidepressant-like behavioural effects. Moreover, mice lacking the GABAB(1b) receptor subunit isoform exhibited antidepressant-like behaviours in adulthood but anxiety-like behaviour in early-life. In response to maternal separation, GABAB(1a)-/- mice exhibited early-life stress-induced anhedonia, a core symptom of depression, while GABAB(1b)-/- mice exhibited a more resilient phenotype. Moreover, when compared with wildtype or GABAB(1a)-/- mice, GABAB(1b)-/- mice that underwent maternal separation exhibited enhanced stressinduced neuronal activation in the hippocampus and in the nucleus accumbens (NAcc), a critical area for anhedonia thus suggesting that enhanced stress-induced neuronal activation in the hippocampus and NAcc in GABAB(1b)-/- mice may be important for their antidepressant-like phenotype and their resilience to stress-induced anhedonia. Pharmacological blockade of GABAB receptor and GABAB(1b) receptor subunit isoform loss of function increased adult hippocampal cell proliferation, thus suggesting that increased hippocampal neurogenesis could be a potential mechanism for the antidepressant-like effects of GABAB receptor antagonists and GABAB(1b) receptor subunit isoform disruption. Finally, this thesis investigated whether the expression of several genes involved in hippocampal neurogenesis or the antidepressant response were altered in the mouse hippocampus following chronic treatment with a GABAB receptor antagonist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this thesis is the exploration and characterisation of the nanoscale electronic properties of conjugated polymers and nanocrystals. In Chapter 2, the first application of conducting-probe atomic force microscopy (CP-AFM)-based displacement-voltage (z-V) spectroscopy to local measurement of electronic properties of conjugated polymer thin films is reported. Charge injection thresholds along with corresponding single particle gap and exciton binding energies are determined for a poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] thin film. By performing measurements across a grid of locations on the film, a series of exciton binding energy distributions are identified. The variation in measured exciton binding energies is in contrast to the smoothness of the film suggesting that the variation may be attributable to differences in the nano-environment of the polymer molecules within the film at each measurement location. In Chapter 3, the CP-AFM-based z-V spectroscopy method is extended for the first time to local, room temperature measurements of the Coulomb blockade voltage thresholds arising from sequential single electron charging of 28 kDa Au nanocrystal arrays. The fluid-like properties of the nanocrystal arrays enable reproducible formation of nanoscale probe-array-substrate junctions, allowing the influence of background charge on the electronic properties of the array to be identified. CP-AFM also allows complementary topography and phase data to be acquired before and after spectroscopy measurements, enabling comparison of local array morphology with local measurements of the Coulomb blockade thresholds. In Chapter 4, melt-assisted template wetting is applied for the first time to massively parallel fabrication of poly-(3-hexylthiophene) nanowires. The structural characteristics of the wires are first presented. Two-terminal electrical measurements of individual nanowires, utilising a CP-AFM tip as the source electrode, are then used to obtain the intrinsic nanowire resistivity and the total nanowire-electrode contact resistance subsequently allowing single nanowire hole mobility and mean nanowire-electrode barrier height values to be estimated. In Chapter 5, solution-assisted template wetting is used for fabrication of fluorene-dithiophene co-polymer nanowires. The structural characteristics of these wires are also presented. Two-terminal electrical measurements of individual nanowires indicate barrier formation at the nanowire-electrode interfaces and measured resistivity values suggest doping of the nanowires, possibly due to air exposure. The first report of single conjugated polymer nanowires as ultra-miniature photodetectors is presented, with single wire devices yielding external quantum efficiencies ~ 0.1 % and responsivities ~ 0.4 mA/W under monochromatic illumination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurogenesis occurs in two distinct regions of the adult brain; the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the subventricular zone (SVZ) lining the lateral ventricles. It is now well-known that adult hippocampal neurogenesis can be modulated by a number of intrinsic and extrinsic factors e.g. local signalling molecules, exercise, environmental enrichment and learning. Moreover, levels of adult hippocampal neurogenesis decrease with age, at least in rodents, and alterations in hippocampal neurogenesis have been reported in animal models and human studies of neuropsychiatric and neurodegenerative conditions. Neuroinflammation is a common pathological feature of these conditions and is also a potent modulator of adult hippocampal neurogenesis. Recently, the orphan nuclear receptor TLX has been identified as an important regulator of adult hippocampal neurogenesis as its expression is necessary to maintain the neural precursor cell (NPC) pool in the adult DG. Likewise, exposure of animals to voluntary exercise has been consistently demonstrated to promote adult hippocampal neurogenesis. Lentivirus (LV)- mediated gene transfer is a useful tool to elucidate gene function and to explore potential therapeutic candidates across an array of conditions as it facilitates sustained gene expression in both dividing and post-mitotic cell populations. Both intrinsic and extrinsic factors are important regulators of adult hippocampal neurogenesis. Examining how these factors are affected by an inflammatory stimulus, and the subsequent effects on adult hippocampal neurogenesis provides important information for the development of novel treatment strategies for neuropsychiatric and neurodegenerative conditions in which adult hippocampal neurogenesis is impaired. The aims of the series of experiments presented in this thesis were to examine the effect of the pro-inflammatory cytokine interleukin-1β (IL-1β) on adult hippocampal NPCs both in vitro and in vivo. In vitro, we have shown that IL-1β reduces proliferation of adult hippocampal NPCs in a dose and time-dependent manner. In addition, we have demonstrated that TLX expression is reduced by IL-1β. Blockade of IL-1β signalling prevented both the IL-1β-induced reduction in cell proliferation and TLX expression. In vivo, we examined the effect of short term and long term exposure to LV-IL-1β in sedentary mice and in mice exposed to voluntary running. We demonstrated that impaired hippocampal neurogenesis is only evident after long term exposure to IL-1β. In mice exposed to voluntary running, hippocampal neurogenesis is significantly increased following short-term but not long-term exposure to running. Moreover, short-term running effectively prevents any IL-1β-induced effects on hippocampal neurogenesis; however, no such effects are seen following long-term exposure to running.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GABAB receptor has been postulated as a possible drug target in the treatment of anxiety disorders and cocaine addiction. Indeed, a wealth of preclinical data is emerging that has shown that mice lacking functional GABAB receptors display a highly anxious behaviour across a range of behavioural models of anxiety. Additionally, novel compounds that act by altering the allosteric conformation of the GABAB receptor to a more active state; the GABAB receptor positive modulators, have been repeatedly demonstrated to have anxiolytic effects in animals. In addition to being a putative anxiolytic drug target, the GABAB receptor has been identified as a novel target for antiaddictive therapies. Indeed GABAB receptor positive modulators have been demonstrated to have anti-addictive properties across a broad variety of behavioural paradigms. Despite these findings, several gaps in our knowledge of the role played by the GABAB receptor in both anxiety and drug abuse disorder exist. The aim of this thesis was to use preclinical animal models in an effort to further probe the role played by the GABAB receptor in anxiety and addiction. Our studies initially examined the role played by the GABAB receptor in the neurodevelopmental processes underpinning of anxiety. Our studies demonstrated that treating mouse pups in early life with the GABAB receptor agonist baclofen produced an anxious phenotype in adult life, whereas treatment with the GABAB receptor antagonist CGP52432 produced no effects on adult behaviour. Further to this, we examined whether the anxious behaviour induced by early life blockade of the serotonin reuptake transporter was dependant on alterations in GABAB receptor function. Our studies however revealed no effect of early life selective serotonin reuptake inhibitor treatment on adult life baclofen sensitivity. The next issue addressed in this thesis is the characterization of the effects of a GABAB receptor positive modulator and a GABAB receptor antagonist in a behavioural model of conditioned fear behaviour. These novel classes of GABAB receptor ligands have been considerably less well characterized in this facet of preclinical anxiety behaviour than in terms of innate anxiety behaviour. Our study however revealed that the GABAB receptor positive modulator GS39783 and the GABAB receptor antagonist CGP52432 were without effect on the acquisition, expression or extinction of conditioned fear in our model. The next element of this thesis dealt with the characterization of a novel mouse model, the GABAB(2)- S892A mouse. This mouse has been engineered to express a form of the GABAB(2) receptor subunit wherein the function determining serine phosphorylation site cannot be phosphorylated. We initially tested this mouse in terms of its GABAB receptor function in adult life, followed by testing it in a battery of tests of unconditioned and learned anxiety behaviour. We also examined the behavioural and molecular responses of the GABAB(2)-S892A mouse to cocaine. All of our studies appear to show that the GABAB(2)-S892A mouse is indistinguishable from wildtype controls. The final aim of the thesis was to investigate the behavioural and molecular sensitivity of the GABAB(1) subunit isoform null mice, the GABAB(1a) -/- and GABAB(1b) -/- mice to cocaine. Our studies revealed that these mice display differing behavioural responses to cocaine, with the GABAB(1a) -/- mouse displaying a hypersensitivity to the acute locomotor effects of cocaine, while the GABAB(1b) -/- displayed blunted locomotor sensitisation to cocaine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Duchenne Muscular Dystrophy (DMD) is a fatal multi-system neuromuscular disease caused by loss of dystrophin. The loss of dystrophin from membranes of contractile muscle cells and the dysregulation of the DAPC, induces chronic inflammation due to tissue necrosis and eventual replacement with collagen which weakens muscular force and strength. Dystrophin deficiency may cause under-diagnosed features of DMD include mood disorders such as depression and anxiety and dysfunction of the gastrointestinal tract. The first study in the thesis examined mood in the dystrophin-deficient mdx mouse model of DMD and examined the effects of the tri-cyclic antidepressant, amitriptyline on behaviours. Amitriptyline had anti-depressant and anxiolytic effects in the mdx mice possibly through effects on stress factors such as corticotrophin-releasing factor (CRF). This antidepressant also reduced skeletal muscle inflammation and caused a reduction in circulating interleukin (IL)-6 levels. In the second and third studies, we specifically blocked IL-6 signalling and used Urocortin 2, CRFR2 agonist to investigate their potential as therapeutic targets in mdx mice pathophysiology. Isometric and isotonic contractile properties of the diaphragm, were compared in mdx mice treated with anti IL-6 receptor antibodies (anti IL-6R) and/or Urocortin 2. Deficits in force production, work and power detected in mdx mice were improved with treatment. In study three I investigated contractile properties in gastrointestinal smooth muscle. As compared to wild type mice, mdx mice had slower faecal transit times, shorter colons with thickened muscle layers and increased contractile activity in response to recombinant IL-6. Blocking IL-6 signalling resulted in an increase in colon length, normalised faecal output times and a reduction in IL-6-evoked contractile activity. The findings from these studies indicate that for both diaphragm and gastrointestinal function in a dystrophin-deficient model, targeting of IL-6 and CRFR2 signalling has beneficial therapeutic effects.