6 resultados para Muscular tension

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne Muscular Dystrophy (DMD) is a fatal multi-system neuromuscular disease caused by loss of dystrophin. The loss of dystrophin from membranes of contractile muscle cells and the dysregulation of the DAPC, induces chronic inflammation due to tissue necrosis and eventual replacement with collagen which weakens muscular force and strength. Dystrophin deficiency may cause under-diagnosed features of DMD include mood disorders such as depression and anxiety and dysfunction of the gastrointestinal tract. The first study in the thesis examined mood in the dystrophin-deficient mdx mouse model of DMD and examined the effects of the tri-cyclic antidepressant, amitriptyline on behaviours. Amitriptyline had anti-depressant and anxiolytic effects in the mdx mice possibly through effects on stress factors such as corticotrophin-releasing factor (CRF). This antidepressant also reduced skeletal muscle inflammation and caused a reduction in circulating interleukin (IL)-6 levels. In the second and third studies, we specifically blocked IL-6 signalling and used Urocortin 2, CRFR2 agonist to investigate their potential as therapeutic targets in mdx mice pathophysiology. Isometric and isotonic contractile properties of the diaphragm, were compared in mdx mice treated with anti IL-6 receptor antibodies (anti IL-6R) and/or Urocortin 2. Deficits in force production, work and power detected in mdx mice were improved with treatment. In study three I investigated contractile properties in gastrointestinal smooth muscle. As compared to wild type mice, mdx mice had slower faecal transit times, shorter colons with thickened muscle layers and increased contractile activity in response to recombinant IL-6. Blocking IL-6 signalling resulted in an increase in colon length, normalised faecal output times and a reduction in IL-6-evoked contractile activity. The findings from these studies indicate that for both diaphragm and gastrointestinal function in a dystrophin-deficient model, targeting of IL-6 and CRFR2 signalling has beneficial therapeutic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are interested in the emergence of new markets. While the literature contains various perspectives on how such new markets come to be, the dynamics of the marketization process are less clear. This paper focuses on the development of stent technology and examines the activities characteristic of its emerging market. We identify four market ‘moments’: a mutable marketing moment prior to the point of disruption; two parallel moments at the point of disruption – internecine marketing between emergent competitors, and subversive marketing between those competitors and established actors; and finally, a civilized marketing moment. We conclude that emergent competitors operate two distinct strategies at the point of disruption. Also, legal activities are central to marketization dynamics during this period. In terms of process, while creative destruction may broadly describe the move from disruption to acceptance, there is a period of creative construction prior to disruption, when the new market is coming into being.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although aspects of power generation of many offshore renewable devices are well understood, their dynamic responses under high wind and wave conditions are still to be investigated to a great detail. Output only statistical markers are important for these offshore devices, since access to the device is limited and information about the exposure conditions and the true behaviour of the devices are generally partial, limited, and vague or even absent. The markers can summarise and characterise the behaviour of these devices from their dynamic response available as time series data. The behaviour may be linear or nonlinear and consequently a marker that can track the changes in structural situations can be quite important. These markers can then be helpful in assessing the current condition of the structure and can indicate possible intervention, monitoring or assessment. This paper considers a Delay Vector Variance based marker for changes in a tension leg platform tested in an ocean wave basin for structural changes brought about by single column dampers. The approach is based on dynamic outputs of the device alone and is based on the estimation of the nonlinearity of the output signal. The advantages of the selected marker and its response with changing structural properties are discussed. The marker is observed to be important for monitoring the as- deployed structural condition and is sensitive to changes in such conditions. Influence of exposure conditions of wave loading is also discussed in this study based only on experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuned liquid column dampers have been proved to be successful in mitigating the dynamic responses of civil infrastructure. There have been some recent applications of this concept on wind turbines and this passive control system can help to mitigate responses of offshore floating platforms and wave devices. The control of dynamic responses of these devices is important for reducing loads on structural elements and facilitating operations and maintenance (O&M) activities. This paper outlines the use of a tuned single liquid column damper for the control of a tension leg platform supported wind turbine. Theoretical studies were carried out and a scaled model was tested in a wave basin to assess the performance of the damper. The tests on the model presented in this paper correspond to a platform with a very low natural frequency for surge, sway and yaw motions. For practical purposes, it was not possible to tune the liquid damper exactly to this frequency. The consequent approach taken and the efficiency of such approach are presented in this paper. Responses to waves of a single frequency are investigated along with responses obtained from wave spectra characterising typical sea states. The extent of control is quantified using peak and root mean squared dynamic responses respectively. The tests present some guidelines and challenges for testing scaled devices in relation to including response control mechanisms. Additionally, the results provide a basis for dictating future research on tuned liquid column damper based control on floating platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For water depths greater than 60m floating wind turbines will become the most economical option for generating offshore wind energy. Tension mooring stabilised units are one type of platform being considered by the offshore wind energy industry. The complex mooring arrangement used by this type of platform means that the dynamics are greatly effected by offsets in the positioning of the anchors. This paper examines the issue of tendon anchor position tolerances. The dynamic effects of three positional tolerances are analysed in survival state using the time domain FASTLink. The severe impact of worst case anchor positional offsets on platform and turbine survivability is shown. The worst anchor misposition combinations are highlighted and should be strongly avoided. Novel methods to mitigate this issue are presented.