3 resultados para Muscular contraction

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne Muscular Dystrophy (DMD) is a fatal multi-system neuromuscular disease caused by loss of dystrophin. The loss of dystrophin from membranes of contractile muscle cells and the dysregulation of the DAPC, induces chronic inflammation due to tissue necrosis and eventual replacement with collagen which weakens muscular force and strength. Dystrophin deficiency may cause under-diagnosed features of DMD include mood disorders such as depression and anxiety and dysfunction of the gastrointestinal tract. The first study in the thesis examined mood in the dystrophin-deficient mdx mouse model of DMD and examined the effects of the tri-cyclic antidepressant, amitriptyline on behaviours. Amitriptyline had anti-depressant and anxiolytic effects in the mdx mice possibly through effects on stress factors such as corticotrophin-releasing factor (CRF). This antidepressant also reduced skeletal muscle inflammation and caused a reduction in circulating interleukin (IL)-6 levels. In the second and third studies, we specifically blocked IL-6 signalling and used Urocortin 2, CRFR2 agonist to investigate their potential as therapeutic targets in mdx mice pathophysiology. Isometric and isotonic contractile properties of the diaphragm, were compared in mdx mice treated with anti IL-6 receptor antibodies (anti IL-6R) and/or Urocortin 2. Deficits in force production, work and power detected in mdx mice were improved with treatment. In study three I investigated contractile properties in gastrointestinal smooth muscle. As compared to wild type mice, mdx mice had slower faecal transit times, shorter colons with thickened muscle layers and increased contractile activity in response to recombinant IL-6. Blocking IL-6 signalling resulted in an increase in colon length, normalised faecal output times and a reduction in IL-6-evoked contractile activity. The findings from these studies indicate that for both diaphragm and gastrointestinal function in a dystrophin-deficient model, targeting of IL-6 and CRFR2 signalling has beneficial therapeutic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excitation-contraction coupling is an essential part of skeletal muscle contraction. It encompasses the sensing of depolarisation of the plasma membrane coupled with the release of Ca2+ from intracellular stores. The channel responsible for this release is called the Ryanodine receptor (RyR), and forms a hub of interacting proteins which work in concert to regulate the release of Ca2+ through this channel. The aim of this work was to characterise possible novel interactions with a proline-rich region of the RyR1, to characterise a monoclonal antibody (mAb VF1c) raised against a junctional sarcoplasmic reticulum protein postulated to interact with RyR1, and to characterise the protein recognised by this antibody in models of skeletal muscle disease such as Duchenne Muscular dystrophy (DMD) and sarcopenia. These experiments were performed using cell culture, protein purification via immunoprecipitation, affinity purification, low pressure chromatography and western blotting techniques. It was found that the RyR1 complex isolated from rat skeletal muscle co-purifies with the Growth factor receptor bound protein 2 (GRB2), very possibly via an interaction between the proline rich region of RyR1 and one of the SH3 domains located on the GRB2 protein. It was also found that Pleiotrophin and Phospholipase Cγ1, suggested interactors of the proline rich region of RyR1, did not co-purify with the RyR1 complex. Characterisation of mAb VF1c determined that this monoclonal antibody interacts with junctophilin 1, and binds to this protein between the region of 369-460, as determined by western blotting of JPH1 fragments expressed in yeast. It was also found that JPH1 and JPH2 are differentially regulated in different muscles of rabbit, where the highest amount of both proteins was found in the extensor digitorum longus (EDL) muscle. JPH1 and 2 levels were also examined in three rodent models of disease: the mdx mouse (a model of DMD), chronic intermittent hypoxia (CIH)-treated rat, and aged and adult mice, a model of sarcopenia. In the EDL and soleus muscle of CIH treated rats, no difference in either JPH1 or JPH2 abundance was detected in either muscle. An examination of JPH1 and 2 expression in mdx and wild type controls diaphragm, vastus lateralis, soleus and gastrocnemius muscle found no major differences in JPH1 abundance, while JPH2 was decreased in mdx gastrocnemius compared to wild type. In a mouse model of sarcopenia, JPH1 abundance was found to be increased in aged soleus but not in aged quadriceps, while in exercised quadriceps, JPH2 abundance was decreased compared to unexercised controls. Taken together, these results have implications for the regulation of RyR1 and JPH1 and 2 in skeletal muscle in both physiological and pathological states, and provide a newly characterised antibody to expand the field of JPH1 research.