6 resultados para Multiarea optimal power flow
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
A novel hybrid data-driven approach is developed for forecasting power system parameters with the goal of increasing the efficiency of short-term forecasting studies for non-stationary time-series. The proposed approach is based on mode decomposition and a feature analysis of initial retrospective data using the Hilbert-Huang transform and machine learning algorithms. The random forests and gradient boosting trees learning techniques were examined. The decision tree techniques were used to rank the importance of variables employed in the forecasting models. The Mean Decrease Gini index is employed as an impurity function. The resulting hybrid forecasting models employ the radial basis function neural network and support vector regression. A part from introduction and references the paper is organized as follows. The second section presents the background and the review of several approaches for short-term forecasting of power system parameters. In the third section a hybrid machine learningbased algorithm using Hilbert-Huang transform is developed for short-term forecasting of power system parameters. Fourth section describes the decision tree learning algorithms used for the issue of variables importance. Finally in section six the experimental results in the following electric power problems are presented: active power flow forecasting, electricity price forecasting and for the wind speed and direction forecasting.
Resumo:
A methodology for improved power controller switching in mobile Body Area Networks operating within the ambient healthcare environment is proposed. The work extends Anti-windup and Bumpless transfer results to provide a solution to the ambulatory networking problem that ensures sufficient biometric data can always be regenerated at the base station. The solution thereby guarantees satisfactory quality of service for healthcare providers. Compensation is provided for the nonlinear hardware constraints that are a typical feature of the type of network under consideration and graceful performance degradation in the face of hardware output power saturation is demonstrated, thus conserving network energy in an optimal fashion.
Resumo:
The performance of an RF output matching network is dependent on integrity of the ground connection. If this connection is compromised in anyway, additional parasitic elements may occur that can degrade performance and yield unreliable results. Traditionally, designers measure Constant Wave (CW) power to determine that the RF chain is performing optimally, the device is properly matched and by implication grounded. It is shown that there are situations where modulation quality can be compromised due to poor grounding that is not apparent using CW power measurements alone. The consequence of this is reduced throughput, range and reliability. Measurements are presented on a Tyndall Mote using a CC2420 RFIC todemonstrate how poor solder contact between the ground contacts and the ground layer of the PCB can lead tothe degradation of modulated performance. Detailed evaluation that required the development of a new measurement definition for 802.15.4 and analysis is presented to show how waveform quality is affected while the modulated output power remains within acceptable limits.
Resumo:
With the proliferation of mobile wireless communication and embedded systems, the energy efficiency becomes a major design constraint. The dissipated energy is often referred as the product of power dissipation and the input-output delay. Most of electronic design automation techniques focus on optimising only one of these parameters either power or delay. Industry standard design flows integrate systematic methods of optimising either area or timing while for power consumption optimisation one often employs heuristics which are characteristic to a specific design. In this work we answer three questions in our quest to provide a systematic approach to joint power and delay Optimisation. The first question of our research is: How to build a design flow which incorporates academic and industry standard design flows for power optimisation? To address this question, we use a reference design flow provided by Synopsys and integrate in this flow academic tools and methodologies. The proposed design flow is used as a platform for analysing some novel algorithms and methodologies for optimisation in the context of digital circuits. The second question we answer is: Is possible to apply a systematic approach for power optimisation in the context of combinational digital circuits? The starting point is a selection of a suitable data structure which can easily incorporate information about delay, power, area and which then allows optimisation algorithms to be applied. In particular we address the implications of a systematic power optimisation methodologies and the potential degradation of other (often conflicting) parameters such as area or the delay of implementation. Finally, the third question which this thesis attempts to answer is: Is there a systematic approach for multi-objective optimisation of delay and power? A delay-driven power and power-driven delay optimisation is proposed in order to have balanced delay and power values. This implies that each power optimisation step is not only constrained by the decrease in power but also the increase in delay. Similarly, each delay optimisation step is not only governed with the decrease in delay but also the increase in power. The goal is to obtain multi-objective optimisation of digital circuits where the two conflicting objectives are power and delay. The logic synthesis and optimisation methodology is based on AND-Inverter Graphs (AIGs) which represent the functionality of the circuit. The switching activities and arrival times of circuit nodes are annotated onto an AND-Inverter Graph under the zero and a non-zero-delay model. We introduce then several reordering rules which are applied on the AIG nodes to minimise switching power or longest path delay of the circuit at the pre-technology mapping level. The academic Electronic Design Automation (EDA) tool ABC is used for the manipulation of AND-Inverter Graphs. We have implemented various combinatorial optimisation algorithms often used in Electronic Design Automation such as Simulated Annealing and Uniform Cost Search Algorithm. Simulated Annealing (SMA) is a probabilistic meta heuristic for the global optimization problem of locating a good approximation to the global optimum of a given function in a large search space. We used SMA to probabilistically decide between moving from one optimised solution to another such that the dynamic power is optimised under given delay constraints and the delay is optimised under given power constraints. A good approximation to the global optimum solution of energy constraint is obtained. Uniform Cost Search (UCS) is a tree search algorithm used for traversing or searching a weighted tree, tree structure, or graph. We have used Uniform Cost Search Algorithm to search within the AIG network, a specific AIG node order for the reordering rules application. After the reordering rules application, the AIG network is mapped to an AIG netlist using specific library cells. Our approach combines network re-structuring, AIG nodes reordering, dynamic power and longest path delay estimation and optimisation and finally technology mapping to an AIG netlist. A set of MCNC Benchmark circuits and large combinational circuits up to 100,000 gates have been used to validate our methodology. Comparisons for power and delay optimisation are made with the best synthesis scripts used in ABC. Reduction of 23% in power and 15% in delay with minimal overhead is achieved, compared to the best known ABC results. Also, our approach is also implemented on a number of processors with combinational and sequential components and significant savings are achieved.
Resumo:
This dissertation applies a variety of quantitative methods to electricity and carbon market data, utility company accounts data, capital and operating costs to analyse some of the challenges associated with investment in energy assets. In particular, three distinct research topics are analysed within this general theme: the efficiency of interconnector trading, the optimal sizing of intermittent wind facilities and the impact of carbon pricing on the cost of capital for investors are researched in successive sections.
Cost savings from relaxation of operational constraints on a power system with high wind penetration
Resumo:
Wind energy is predominantly a nonsynchronous generation source. Large-scale integration of wind generation with existing electricity systems, therefore, presents challenges in maintaining system frequency stability and local voltage stability. Transmission system operators have implemented system operational constraints (SOCs) in order to maintain stability with high wind generation, but imposition of these constraints results in higher operating costs. A mixed integer programming tool was used to simulate generator dispatch in order to assess the impact of various SOCs on generation costs. Interleaved day-ahead scheduling and real-time dispatch models were developed to allow accurate representation of forced outages and wind forecast errors, and were applied to the proposed Irish power system of 2020 with a wind penetration of 32%. Savings of at least 7.8% in generation costs and reductions in wind curtailment of 50% were identified when the most influential SOCs were relaxed. The results also illustrate the need to relax local SOCs together with the system-wide nonsynchronous penetration limit SOC, as savings from increasing the nonsynchronous limit beyond 70% were restricted without relaxation of local SOCs. The methodology and results allow for quantification of the costs of SOCs, allowing the optimal upgrade path for generation and transmission infrastructure to be determined.