5 resultados para Multi-sided platform
em CORA - Cork Open Research Archive - University College Cork - Ireland
The s-mote: a versatile heterogeneous multi-radio platform for wireless sensor networks applications
Resumo:
This paper presents a novel architecture and its implementation for a versatile, miniaturised mote which can communicate concurrently using a variety of combinations of ISM bands, has increased processing capability, and interoperability with mainstream GSM technology. All these features are integrated in a small form factor platform. The platform can have many configurations which could satisfy a variety of applications’ constraints. To the best of our knowledge, it is the first integrated platform of this type reported in the literature. The proposed platform opens the way for enhanced levels of Quality of Service (QoS), with respect to reliability, availability and latency, in addition to facilitating interoperability and power reduction compared to existing platforms. The small form factor also allows potential of integration with other mobile platforms including smart phones.
Resumo:
Body Sensor Network (BSN) technology is seeing a rapid emergence in application areas such as health, fitness and sports monitoring. Current BSN wireless sensors typically operate on a single frequency band (e.g. utilizing the IEEE 802.15.4 standard that operates at 2.45GHz) employing a single radio transceiver for wireless communications. This allows a simple wireless architecture to be realized with low cost and power consumption. However, network congestion/failure can create potential issues in terms of reliability of data transfer, quality-of-service (QOS) and data throughput for the sensor. These issues can be especially critical in healthcare monitoring applications where data availability and integrity is crucial. The addition of more than one radio has the potential to address some of the above issues. For example, multi-radio implementations can allow access to more than one network, providing increased coverage and data processing as well as improved interoperability between networks. A small number of multi-radio wireless sensor solutions exist at present but require the use of more than one radio transceiver devices to achieve multi-band operation. This paper presents the design of a novel prototype multi-radio hardware platform that uses a single radio transceiver. The proposed design allows multi-band operation in the 433/868MHz ISM bands and this, together with its low complexity and small form factor, make it suitable for a wide range of BSN applications.
Resumo:
Rachit Agarwal, Rafael V. Martinez-Catala, Sean Harte, Cedric Segard, Brendan O'Flynn, "Modeling Power in Multi-functionality Sensor Network Applications," sensorcomm, pp.507-512, 2008 Proceedings of the Second International Conference on Sensor Technologies and Applications, August 25-August 31 2008, Cap Esterel, France
Resumo:
Complex systems, from environmental behaviour to electronics reliability, can now be monitored with Wireless Sensor Networks (WSN), where multiple environmental sensors are deployed in remote locations. This ensures aggregation and reading of data, at lower cost and lower power consumption. Because miniaturisation of the sensing system is hampered by the fact that discrete sensors and electronics consume board area, the development of MEMS sensors offers a promising solution. At Tyndall, the fabrication flow of multiple sensors has been made compatible with CMOS circuitry to further reduce size and cost. An ideal platform on which to host these MEMS environmental sensors is the Tyndall modular wireless mote. This paper describes the development and test of the latest sensors incorporating temperature, humidity, corrosion, and gas. It demonstrates their deployment on the Tyndall platform, allowing real-time readings, data aggregation and cross-correlation capabilities. It also presents the design of the next generation sensing platform using the novel 10mm wireless cube developed by Tyndall.
Resumo:
The world’s population is rapidly aging, which affects healthcare budgets, resources, pensions and social security systems. Although most older adults prefer to live independently in their own home as long as possible, smart living solutions to support elderly people at home did not reach mass adoption, yet. To support people age-in-place a Living Lab is established in one of the metropolitan areas in the Netherlands. The main goal of the Living Lab is to develop an online health and wellbeing platform that matches service providers, caretakers and users and to implement that platform in one particular city district. In this paper we describe the narrative of the action design research process that will give researchers insight how to deal with complex multi-stakeholder design projects as well as cooperation issues to develop an artifact in a real-life setting.