8 resultados para Morrison Toni

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accepted Version

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multiquantum barrier (MQB), proposed by Iga et al in 1986, has been shown by several researchers to be an effective structure for improving the operating characteristics of laser diodes. These improvements include a reduction in the laser threshold current and increased characteristic temperatures. The operation of the MQB has been described as providing an increased barrier to electron overflow by reflecting high energy electrons trying to escape from the active region of the laser.This is achieved in a manner analogous to a Bragg reflector in optics. This thesis presents an investigation of the effectiveness of the MQB as an electron reflector. Numerical models have been developed for calculating the electron reflection due to MQB. Novel optical and electrical characterisation techniques have been used to try to measure an increase in barrier height due to the MQB in AlGaInP.It has been shown that the inclusion of MQB structures in bulk double heterostructure visible laser diodes can halve the threshold current above room temperature and the characteristic temperature of these lasers can be increased by up to 20K.These improvements are shown to occur in visible laser diodes even with the inclusion of theoretically ineffective MQB structures, hence the observed improvement in the characteristics of the laser diodes described above cannot be uniquely attributed to an increased barrier height due to enhance electron reflection. It is proposed here that the MQB improves the performance of laser diodes by proventing the diffusion of zinc into the active region of the laser. It is also proposed that the trapped zinc in the MQB region of the laser diode locally increases the p-type doping bringing the quasi-Fermi level for holes closer to the valence band edge thus increasing the barrier to electron overflow in the conduction band.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon (Si) is the base material for electronic technologies and is emerging as a very attractive platform for photonic integrated circuits (PICs). PICs allow optical systems to be made more compact with higher performance than discrete optical components. Applications for PICs are in the area of fibre-optic communication, biomedical devices, photovoltaics and imaging. Germanium (Ge), due to its suitable bandgap for telecommunications and its compatibility with Si technology is preferred over III-V compounds as an integrated on-chip detector at near infrared wavelengths. There are two main approaches for Ge/Si integration: through epitaxial growth and through direct wafer bonding. The lattice mismatch of ~4.2% between Ge and Si is the main problem of the former technique which leads to a high density of dislocations while the bond strength and conductivity of the interface are the main challenges of the latter. Both result in trap states which are expected to play a critical role. Understanding the physics of the interface is a key contribution of this thesis. This thesis investigates Ge/Si diodes using these two methods. The effects of interface traps on the static and dynamic performance of Ge/Si avalanche photodetectors have been modelled for the first time. The thesis outlines the original process development and characterization of mesa diodes which were fabricated by transferring a ~700 nm thick layer of p-type Ge onto n-type Si using direct wafer bonding and layer exfoliation. The effects of low temperature annealing on the device performance and on the conductivity of the interface have been investigated. It is shown that the diode ideality factor and the series resistance of the device are reduced after annealing. The carrier transport mechanism is shown to be dominated by generation–recombination before annealing and by direct tunnelling in forward bias and band-to-band tunnelling in reverse bias after annealing. The thesis presents a novel technique to realise photodetectors where one of the substrates is thinned by chemical mechanical polishing (CMP) after bonding the Si-Ge wafers. Based on this technique, Ge/Si detectors with remarkably high responsivities, in excess of 3.5 A/W at 1.55 μm at −2 V, under surface normal illumination have been measured. By performing electrical and optical measurements at various temperatures, the carrier transport through the hetero-interface is analysed by monitoring the Ge band bending from which a detailed band structure of the Ge/Si interface is proposed for the first time. The above unity responsivity of the detectors was explained by light induced potential barrier lowering at the interface. To our knowledge this is the first report of light-gated responsivity for vertically illuminated Ge/Si photodiodes. The wafer bonding approach followed by layer exfoliation or by CMP is a low temperature wafer scale process. In principle, the technique could be extended to other materials such as Ge on GaAs, or Ge on SOI. The unique results reported here are compatible with surface normal illumination and are capable of being integrated with CMOS electronics and readout units in the form of 2D arrays of detectors. One potential future application is a low-cost Si process-compatible near infrared camera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Avalanche Photodiodes (APDs) have been used in a wide range of low light sensing applications such as DNA sequencing, quantum key distribution, LIDAR and medical imaging. To operate the APDs, control circuits are required to achieve the desired performance characteristics. This thesis presents the work on development of three control circuits including a bias circuit, an active quench and reset circuit and a gain control circuit all of which are used for control and performance enhancement of the APDs. The bias circuit designed is used to bias planar APDs for operation in both linear and Geiger modes. The circuit is based on a dual charge pumps configuration and operates from a 5 V supply. It is capable of providing milliamp load currents for shallow-junction planar APDs that operate up to 40 V. With novel voltage regulators, the bias voltage provided by the circuit can be accurately controlled and easily adjusted by the end user. The circuit is highly integrable and provides an attractive solution for applications requiring a compact integrated APD device. The active quench and reset circuit is designed for APDs that operate in Geiger-mode and are required for photon counting. The circuit enables linear changes in the hold-off time of the Geiger-mode APD (GM-APD) from several nanoseconds to microseconds with a stable setting step of 6.5 ns. This facilitates setting the optimal `afterpulse-free' hold-off time for any GM-APD via user-controlled digital inputs. In addition this circuit doesn’t require an additional monostable or pulse generator to reset the detector, thus simplifying the circuit. Compared to existing solutions, this circuit provides more accurate and simpler control of the hold-off time while maintaining a comparable maximum count-rate of 35.2 Mcounts/s. The third circuit designed is a gain control circuit. This circuit is based on the idea of using two matched APDs to set and stabilize the gain. The circuit can provide high bias voltage for operating the planar APD, precisely set the APD’s gain (with the errors of less than 3%) and compensate for the changes in the temperature to maintain a more stable gain. The circuit operates without the need for external temperature sensing and control electronics thus lowering the system cost and complexity. It also provides a simpler and more compact solution compared to previous designs. The three circuits designed in this project were developed independently of each other and are used for improving different performance characteristics of the APD. Further research on the combination of the three circuits will produce a more compact APD-based solution for a wide range of applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar Energy is a clean and abundant energy source that can help reduce reliance on fossil fuels around which questions still persist about their contribution to climate and long-term availability. Monolithic triple-junction solar cells are currently the state of the art photovoltaic devices with champion cell efficiencies exceeding 40%, but their ultimate efficiency is restricted by the current-matching constraint of series-connected cells. The objective of this thesis was to investigate the use of solar cells with lattice constants equal to InP in order to reduce the constraint of current matching in multi-junction solar cells. This was addressed by two approaches: Firstly, the formation of mechanically stacked solar cells (MSSC) was investigated through the addition of separate connections to individual cells that make up a multi-junction device. An electrical and optical modelling approach identified separately connected InGaAs bottom cells stacked under dual-junction GaAs based top cells as a route to high efficiency. An InGaAs solar cell was fabricated on an InP substrate with a measured 1-Sun conversion efficiency of 9.3%. A comparative study of adhesives found benzocyclobutene to be the most suitable for bonding component cells in a mechanically stacked configuration owing to its higher thermal conductivity and refractive index when compared to other candidate adhesives. A flip-chip process was developed to bond single-junction GaAs and InGaAs cells with a measured 4-terminal MSSC efficiency of 25.2% under 1-Sun conditions. Additionally, a novel InAlAs solar cell was identified, which can be used to provide an alternative to the well established GaAs solar cell. As wide bandgap InAlAs solar cells have not been extensively investigated for use in photovoltaics, single-junction cells were fabricated and their properties relevant to PV operation analysed. Minority carrier diffusion lengths in the micrometre range were extracted, confirming InAlAs as a suitable material for use in III-V solar cells, and a 1-Sun conversion efficiency of 6.6% measured for cells with 800 nm thick absorber layers. Given the cost and small diameter of commercially available InP wafers, InGaAs and InAlAs solar cells were fabricated on alternative substrates, namely GaAs. As a first demonstration the lattice constant of a GaAs substrate was graded to InP using an InxGa1-xAs metamorphic buffer layer onto which cells were grown. This was the first demonstration of an InAlAs solar cell on an alternative substrate and an initial step towards fabricating these cells on Si. The results presented offer a route to developing multi-junction solar cell devices based on the InP lattice parameter, thus extending the range of available bandgaps for high efficiency cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High volumes of data traffic along with bandwidth hungry applications, such as cloud computing and video on demand, is driving the core optical communication links closer and closer to their maximum capacity. The research community has clearly identifying the coming approach of the nonlinear Shannon limit for standard single mode fibre [1,2]. It is in this context that the work on modulation formats, contained in Chapter 3 of this thesis, was undertaken. The work investigates the proposed energy-efficient four-dimensional modulation formats. The work begins by studying a new visualisation technique for four dimensional modulation formats, akin to constellation diagrams. The work then carries out one of the first implementations of one such modulation format, polarisation-switched quadrature phase-shift keying (PS-QPSK). This thesis also studies two potential next-generation fibres, few-mode and hollow-core photonic band-gap fibre. Chapter 4 studies ways to experimentally quantify the nonlinearities in few-mode fibre and assess the potential benefits and limitations of such fibres. It carries out detailed experiments to measure the effects of stimulated Brillouin scattering, self-phase modulation and four-wave mixing and compares the results to numerical models, along with capacity limit calculations. Chapter 5 investigates hollow-core photonic band-gap fibre, where such fibres are predicted to have a low-loss minima at a wavelength of 2μm. To benefit from this potential low loss window requires the development of telecoms grade subsystems and components. The chapter will outline some of the development and characterisation of these components. The world's first wavelength division multiplexed (WDM) subsystem directly implemented at 2μm is presented along with WDM transmission over hollow-core photonic band-gap fibre at 2μm. References: [1]P. P. Mitra, J. B. Stark, Nature, 411, 1027-1030, 2001 [2] A. D. Ellis et al., JLT, 28, 423-433, 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The power output of dual-junction mechanically stacked solar cells comprising different sub-cell materials in a terrestrial concentrating photovoltaic module has been evaluated. The ideal bandgap combination of both cells in a stack was found using EtaOpt. A combination of 1.4 eV and 0.7 eV has been found to produce the highest photovoltaic conversion efficiency under the AM1.5 Direct Solar Spectrum with x500 concentration. As EtaOpt does not consider the absorption profile of solar cell materials; the practical power output per unit area of a dual junction mechanically stacked solar cell has been modelled considering the optical absorption co-efficients and thicknesses of the individual solar cells. The model considered a GaAs top cell and a Ge, GaSb, Ga0.47In0.53As or Si bottom cell. It was found that GaSb gives the highest power contribution as a bottom cell in a dual junction configuration followed by Ge and GaInAs. While the additional power provided by a Si bottom cell is less than these it remains a suitable candidate for a bottom cell owing to its lower cost

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is estimated that the quantity of digital data being transferred, processed or stored at any one time currently stands at 4.4 zettabytes (4.4 × 2 70 bytes) and this figure is expected to have grown by a factor of 10 to 44 zettabytes by 2020. Exploiting this data is, and will remain, a significant challenge. At present there is the capacity to store 33% of digital data in existence at any one time; by 2020 this capacity is expected to fall to 15%. These statistics suggest that, in the era of Big Data, the identification of important, exploitable data will need to be done in a timely manner. Systems for the monitoring and analysis of data, e.g. stock markets, smart grids and sensor networks, can be made up of massive numbers of individual components. These components can be geographically distributed yet may interact with one another via continuous data streams, which in turn may affect the state of the sender or receiver. This introduces a dynamic causality, which further complicates the overall system by introducing a temporal constraint that is difficult to accommodate. Practical approaches to realising the system described above have led to a multiplicity of analysis techniques, each of which concentrates on specific characteristics of the system being analysed and treats these characteristics as the dominant component affecting the results being sought. The multiplicity of analysis techniques introduces another layer of heterogeneity, that is heterogeneity of approach, partitioning the field to the extent that results from one domain are difficult to exploit in another. The question is asked can a generic solution for the monitoring and analysis of data that: accommodates temporal constraints; bridges the gap between expert knowledge and raw data; and enables data to be effectively interpreted and exploited in a transparent manner, be identified? The approach proposed in this dissertation acquires, analyses and processes data in a manner that is free of the constraints of any particular analysis technique, while at the same time facilitating these techniques where appropriate. Constraints are applied by defining a workflow based on the production, interpretation and consumption of data. This supports the application of different analysis techniques on the same raw data without the danger of incorporating hidden bias that may exist. To illustrate and to realise this approach a software platform has been created that allows for the transparent analysis of data, combining analysis techniques with a maintainable record of provenance so that independent third party analysis can be applied to verify any derived conclusions. In order to demonstrate these concepts, a complex real world example involving the near real-time capturing and analysis of neurophysiological data from a neonatal intensive care unit (NICU) was chosen. A system was engineered to gather raw data, analyse that data using different analysis techniques, uncover information, incorporate that information into the system and curate the evolution of the discovered knowledge. The application domain was chosen for three reasons: firstly because it is complex and no comprehensive solution exists; secondly, it requires tight interaction with domain experts, thus requiring the handling of subjective knowledge and inference; and thirdly, given the dearth of neurophysiologists, there is a real world need to provide a solution for this domain