9 resultados para Monitoring system

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Many European countries including Ireland lack high quality, on-going, population based estimates of maternal behaviours and experiences during pregnancy. PRAMS is a CDC surveillance program which was established in the United States in 1987 to generate high quality, population based data to reduce infant mortality rates and improve maternal and infant health. PRAMS is the only on-going population based surveillance system of maternal behaviours and experiences that occur before, during and after pregnancy worldwide.Methods: The objective of this study was to adapt, test and evaluate a modified CDC PRAMS methodology in Ireland. The birth certificate file which is the standard approach to sampling for PRAMS in the United States was not available for the PRAMS Ireland study. Consequently, delivery record books for the period between 3 and 5 months before the study start date at a large urban obstetric hospital [8,900 births per year] were used to randomly sample 124 women. Name, address, maternal age, infant sex, gestational age at delivery, delivery method, APGAR score and birth weight were manually extracted from records. Stillbirths and early neonatal deaths were excluded using APGAR scores and hospital records. Women were sent a letter of invitation to participate including option to opt out, followed by a modified PRAMS survey, a reminder letter and a final survey.Results: The response rate for the pilot was 67%. Two per cent of women refused the survey, 7% opted out of the study and 24% did not respond. Survey items were at least 88% complete for all 82 respondents. Prevalence estimates of socially undesirable behaviours such as alcohol consumption during pregnancy were high [>50%] and comparable with international estimates.Conclusion: PRAMS is a feasible and valid method of collecting information on maternal experiences and behaviours during pregnancy in Ireland. PRAMS may offer a potential solution to data deficits in maternal health behaviour indicators in Ireland with further work. This study is important to researchers in Europe and elsewhere who may be interested in new ways of tailoring an established CDC methodology to their unique settings to resolve data deficits in maternal health.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

At a time when technological advances are providing new sensor capabilities, novel network capabilities, long-range communications technologies and data interpreting and delivery formats via the World Wide Web, we never before had such opportunities to sense and analyse the environment around us. However, the challenges exist. While measurement and detection of environmental pollutants can be successful under laboratory-controlled conditions, continuous in-situ monitoring remains one of the most challenging aspects of environmental sensing. This paper describes the development and test of a multi-sensor heterogeneous real-time water monitoring system. A multi-sensor system was deployed in the River Lee, County Cork, Ireland to monitor water quality parameters such as pH, temperature, conductivity, turbidity and dissolved oxygen. The R. Lee comprises of a tidal water system that provides an interesting test site to monitor. The multi-sensor system set-up is described and results of the sensor deployment and the various challenges are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: On-going surveillance of behaviours during pregnancy is an important but overlooked population health activity that is particularly lacking in Ireland. Few, if any, nationally representative estimates of most maternal behaviours and experiences are available. While on-going surveillance of maternal behaviours has not been a priority thus far in European countries including Ireland, on-going surveillance was identified as a key priority in the United States (US) during the 1980’s when the Pregnancy Risk Assessment Monitoring System (PRAMS), was established. Today, PRAMS is the only surveillance programme of maternal behaviours and experiences world-wide. Although on-going prevalence estimates are required in Ireland, studies which examine the offspring health effects of maternal behaviours are also required, since various questions regarding maternal exposures and their offspring health effects remain unanswered. Gestational alcohol consumption is one such important maternal exposure which is common in pregnancy, though its offspring health effects are unclear, particularly at lower or moderate levels. Thus, guidelines internationally have not reached consensus on safe alcohol recommendations for pregnant women. The aims of this thesis are to implement the PRAMS in Ireland (PRAMS Ireland), to describe the prevalence of health behaviours around the time of pregnancy in Ireland and to examine the effect of health behaviours on pregnancy and child outcomes (specifically the relationship between alcohol use during pregnancy and infant and child growth). Structure: In Chapter 1, a brief background and rationale for the work, as well as the thesis aims and objective is provided. A detailed description of the design and implementation of PRAMS Ireland is described in Chapter 2. Chapter 3 and Chapter 4 describe the methodological results of the implementation of the PRAMS Ireland pilot study and PRAMS Ireland main study. In Chapter 5, a comparison of alcohol prevalence in two Irish studies (PRAMS Ireland and Growing up in Ireland (GUI)) and one multi-centre prospective cohort study, Screening for Pregnancy Endpoints (SCOPE) Study is detailed. Chapter 6 describes findings on adherence to National Clinical Guidelines on health behaviours and nutrition around the time of pregnancy in PRAMS Ireland. Findings on exposure to alcohol use in pregnancy and infant growth outcomes are described in Chapter 7 and Chapter 8. The results of analysis conducted to examine the impact of gestational alcohol use on offspring growth trajectories to age ten are described in Chapter 9. Finally, a discussion of the findings, strengths and limitations of the thesis, direction for future research, policy, practice and public health implications are discussed in Chapter 10.Results: Implementation of PRAMS: PRAMS may be an effective system for the surveillance of health behaviours around the time of pregnancy in the Irish context. PRAMS Ireland had high response rates (67% and 61% response rates in the pilot and main study respectively), high item completion rates and valid prevalence estimates for many health behaviours. Examining prevalence of health behaviours: We found high levels of alcohol consumption before and during pregnancy, poor adherence to healthy diets and high levels of smoking before and during pregnancy among women in Ireland. Socially disadvantaged women had higher rates of deleterious health behaviours before pregnancy, although women with the most deleterious behaviour profiles before pregnancy appeared to experience the greatest gain in protective health behaviours during pregnancy. The impact of alcohol use on infant and offspring growth: We found that low and moderate levels of alcohol use did not impact on birth outcomes or offspring growth whereas heavy alcohol consumption resulted in reduced birth length and birth weight; however, this finding was not consistently observed across all studies. Selection, reporting and confounding biases which are common in observational research could be masking harmful effects. Conclusion: PRAMS is a valid and feasible method of surveillance of health behaviours around the time of pregnancy in Ireland. A surveillance program of maternal behaviours and experiences is immediately warranted due to high levels of deleterious health behaviours around the time of pregnancy in Ireland. Although our results do not indicate any evidence of harm, given the quality of evidence available, abstinence and advice of abstinence from alcohol may be the most prudent choice for patients and healthcare professionals respectively. Further studies of the effects of gestational alcohol use are required; particularly those which can reduce selection bias, reporting bias and confounding.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Axle bearing damage with possible catastrophic failures can cause severe disruptions or even dangerous derailments, potentially causing loss of human life and leading to significant costs for railway infrastructure managers and rolling stock operators. Consequently the axle bearing damage process has safety and economic implications on the exploitation of railways systems. Therefore it has been the object of intense attention by railway authorities as proved by the selection of this topic by the European Commission in calls for research proposals. The MAXBE Project (http://www.maxbeproject.eu/), an EU-funded project, appears in this context and its main goal is to develop and to demonstrate innovative and efficient technologies which can be used for the onboard and wayside condition monitoring of axle bearings. The MAXBE (interoperable monitoring, diagnosis and maintenance strategies for axle bearings) project focuses on detecting axle bearing failure modes at an early stage by combining new and existing monitoring techniques and on characterizing the axle bearing degradation process. The consortium for the MAXBE project comprises 18 partners from 8 member states, representing operators, railway administrations, axle bearing manufactures, key players in the railway community and experts in the field of monitoring, maintenance and rolling stock. The University of Porto is coordinating this research project that kicked-off in November 2012 and it is completed on October 2015. Both on-board and wayside systems are explored in the project since there is a need for defining the requirement for the onboard equipment and the range of working temperatures of the axle bearing for the wayside systems. The developed monitoring systems consider strain gauges, high frequency accelerometers, temperature sensors and acoustic emission. To get a robust technology to support the decision making of the responsible stakeholders synchronized measurements from onboard and wayside monitoring systems are integrated into a platform. Also extensive laboratory tests were performed to correlate the in situ measurements to the status of the axle bearing life. With the MAXBE project concept it will be possible: to contribute to detect at an early stage axle bearing failures; to create conditions for the operational and technical integration of axle bearing monitoring and maintenance in different European railway networks; to contribute to the standardization of the requirements for the axle bearing monitoring, diagnosis and maintenance. Demonstration of the developed condition monitoring systems was performed in Portugal in the Northern Railway Line with freight and passenger traffic with a maximum speed of 220 km/h, in Belgium in a tram line and in the UK. Still within the project, a tool for optimal maintenance scheduling and a smart diagnostic tool were developed. This paper presents a synthesis of the most relevant results attained in the project. The successful of the project and the developed solutions have positive impact on the reliability, availability, maintainability and safety of rolling stock and infrastructure with main focus on the axle bearing health.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Predicting the evolution of a coastal cell requires the identification of the key drivers of morphology. Soft coastlines are naturally dynamic but severe storm events and even human intervention can accelerate any changes that are occurring. However, when erosive events such as barrier breaching occur with no obvious contributory factors, a deeper understanding of the underlying coastal processes is required. Ideally conclusions on morphological drivers should be drawn from field data collection and remote sensing over a long period of time. Unfortunately, when the Rossbeigh barrier beach in Dingle Bay, County Kerry, began to erode rapidly in the early 2000’s, eventually leading to it breaching in 2008, no such baseline data existed. This thesis presents a study of the morphodynamic evolution of the Inner Dingle Bay coastal system. The study combines existing coastal zone analysis approaches with experimental field data collection techniques and a novel approach to long term morphodynamic modelling to predict the evolution of the barrier beach inlet system. A conceptual model describing the long term evolution of Inner Dingle Bay in 5 stages post breaching was developed. The dominant coastal processes driving the evolution of the coastal system were identified and quantified. A new methodology of long term process based numerical modelling approach to coastal evolution was developed. This method was used to predict over 20 years of coastal evolution in Inner Dingle Bay. On a broader context this thesis utilised several experimental coastal zone data collection and analysis methods such as ocean radar and grain size trend analysis. These were applied during the study and their suitability to a dynamic coastal system was assessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a prototype of miniaturized, low power, bi-directional wireless sensor node for wireless sensor networks (WSN) was designed for doors and windows building monitoring. The capacitive pressure sensors have been developed particularly for such application, where packaging size and minimization of the power requirements of the sensors are the major drivers. The capacitive pressure sensors have been fabricated using a 2.4 mum thick strain compensated heavily boron doped SiGeB diaphragm is presented. In order to integrate the sensors with the wireless module, the sensor dice was wire bonded onto TO package using chip on board (COB) technology. The telemetric link and its capabilities to send information for longer range have been significantly improved using a new design and optimization process. The simulation tool employed for this work was the Designerreg tool from Ansoft Corporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GENESI project has the ambitious goal of bringing WSN technology to the level where it can provide the core of the next generation of systems for structural health monitoring that are long lasting, pervasive and totally distributed and autonomous. This goal requires embracing engineering and scientific challenges never successfully tackled before. Sensor nodes will be redesigned to overcome their current limitations, especially concerning energy storage and provisioning (we need devices with virtually infinite lifetime) and resilience to faults and interferences (for reliability and robustness). New software and protocols will be defined to fully take advantage of the new hardware, providing new paradigms for cross-layer interaction at all layers of the protocol stack and satisfying the requirements of a new concept of Quality of Service (QoS) that is application-driven, truly reflecting the end user perspective and expectations. The GENESI project will develop long lasting sensor nodes by combining cutting edge technologies for energy generation from the environment (energy harvesting) and green energy supply (small form factor fuel cells); GENESI will define models for energy harvesting, energy conservation in super-capacitors and supplemental energy availability through fuel cells, in addition to the design of new algorithms and protocols for dynamic allocation of sensing and communication tasks to the sensors. The project team will design communication protocols for large scale heterogeneous wireless sensor/actuator networks with energy-harvesting capabilities and define distributed mechanisms for context assessment and situation awareness. This paper presents an analysis of the GENESI system requirements in order to achieve the ambitious goals of the project. Extending from the requirements presented, the emergent system specification is discussed with respect to the selection and integration of relevant system components.The resulting integrated system will be evaluated and characterised to ensure that it is capable of satisfying the functional requirements of the project

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) is an integral part of infrastructure maintenance and management systems due to socio-economic, safety and security reasons. The behaviour of a structure under vibration depends on structure characteristics. The change of structure characteristics may suggest the change in system behaviour due to the presence of damage(s) within. Therefore the consistent, output signal guided, and system dependable markers would be convenient tool for the online monitoring, the maintenance, rehabilitation strategies, and optimized decision making policies as required by the engineers, owners, managers, and the users from both safety and serviceability aspects. SHM has a very significant advantage over traditional investigations where tangible and intangible costs of a very high degree are often incurred due to the disruption of service. Additionally, SHM through bridge-vehicle interaction opens up opportunities for continuous tracking of the condition of the structure. Research in this area is still in initial stage and is extremely promising. This PhD focuses on using bridge-vehicle interaction response for SHM of damaged or deteriorating bridges to monitor or assess them under operating conditions. In the present study, a number of damage detection markers have been investigated and proposed in order to identify the existence, location, and the extent of an open crack in the structure. The theoretical and experimental investigation has been conducted on Single Degree of Freedom linear system, simply supported beams. The novel Delay Vector Variance (DVV) methodology has been employed for characterization of structural behaviour by time-domain response analysis. Also, the analysis of responses of actual bridges using DVV method has been for the first time employed for this kind of investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is estimated that the quantity of digital data being transferred, processed or stored at any one time currently stands at 4.4 zettabytes (4.4 × 2 70 bytes) and this figure is expected to have grown by a factor of 10 to 44 zettabytes by 2020. Exploiting this data is, and will remain, a significant challenge. At present there is the capacity to store 33% of digital data in existence at any one time; by 2020 this capacity is expected to fall to 15%. These statistics suggest that, in the era of Big Data, the identification of important, exploitable data will need to be done in a timely manner. Systems for the monitoring and analysis of data, e.g. stock markets, smart grids and sensor networks, can be made up of massive numbers of individual components. These components can be geographically distributed yet may interact with one another via continuous data streams, which in turn may affect the state of the sender or receiver. This introduces a dynamic causality, which further complicates the overall system by introducing a temporal constraint that is difficult to accommodate. Practical approaches to realising the system described above have led to a multiplicity of analysis techniques, each of which concentrates on specific characteristics of the system being analysed and treats these characteristics as the dominant component affecting the results being sought. The multiplicity of analysis techniques introduces another layer of heterogeneity, that is heterogeneity of approach, partitioning the field to the extent that results from one domain are difficult to exploit in another. The question is asked can a generic solution for the monitoring and analysis of data that: accommodates temporal constraints; bridges the gap between expert knowledge and raw data; and enables data to be effectively interpreted and exploited in a transparent manner, be identified? The approach proposed in this dissertation acquires, analyses and processes data in a manner that is free of the constraints of any particular analysis technique, while at the same time facilitating these techniques where appropriate. Constraints are applied by defining a workflow based on the production, interpretation and consumption of data. This supports the application of different analysis techniques on the same raw data without the danger of incorporating hidden bias that may exist. To illustrate and to realise this approach a software platform has been created that allows for the transparent analysis of data, combining analysis techniques with a maintainable record of provenance so that independent third party analysis can be applied to verify any derived conclusions. In order to demonstrate these concepts, a complex real world example involving the near real-time capturing and analysis of neurophysiological data from a neonatal intensive care unit (NICU) was chosen. A system was engineered to gather raw data, analyse that data using different analysis techniques, uncover information, incorporate that information into the system and curate the evolution of the discovered knowledge. The application domain was chosen for three reasons: firstly because it is complex and no comprehensive solution exists; secondly, it requires tight interaction with domain experts, thus requiring the handling of subjective knowledge and inference; and thirdly, given the dearth of neurophysiologists, there is a real world need to provide a solution for this domain