8 resultados para Money Smart Week 2016
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Heating, ventilation, air conditioning (HVAC) systems are significant consumers of energy, however building management systems do not typically operate them in accordance with occupant movements. Due to the delayed response of HVAC systems, prediction of occupant locations is necessary to maximize energy efficiency. We present an approach to occupant location prediction based on association rule mining, allowing prediction based on historical occupant locations. Association rule mining is a machine learning technique designed to find any correlations which exist in a given dataset. Occupant location datasets have a number of properties which differentiate them from the market basket datasets that association rule mining was originally designed for. This thesis adapts the approach to suit such datasets, focusing the rule mining process on patterns which are useful for location prediction. This approach, named OccApriori, allows for the prediction of occupants’ next locations as well as their locations further in the future, and can take into account any available data, for example the day of the week, the recent movements of the occupant, and timetable data. By integrating an existing extension of association rule mining into the approach, it is able to make predictions based on general classes of locations as well as specific locations.
Resumo:
Smart hydrogels for biomedical applications are highly researched materials. However, integrating them into a device for implantation is difficult. This paper investigates an integrated delivery device designed to deliver an electro-responsive hydrogel to a target location inside a blood vessel with the purpose of creating an occlusion. The paper describes the synthesis and characterization of a Pluronic/methacrylic acid sodium salt electro-responsive hydrogel. Application of an electrical bias decelerates the expansion of the hydrogel. An integrated delivery system was manufactured to deliver the hydrogel to the target location in the body. Ex vivo and in vivo experiments in the carotid artery of sheep were used to validate the concept. The hydrogel was able to completely occlude the blood vessel reducing the blood flow from 245 to 0 ml/min after implantation. Ex vivo experiments showed that the hydrogel was able to withstand physiological blood pressures of > 270 mm·Hg without dislodgement. The results showed that the electro-responsive hydrogel used in this paper can be used to create a long-term occlusion in a blood vessel without any apparent side effects. The delivery system developed is a promising device for the delivery of electro-responsive hydrogels.
Resumo:
Wireless Inertial Measurement Units (WIMUs) combine motion sensing, processing & communications functionsin a single device. Data gathered using these sensors has the potential to be converted into high quality motion data. By outfitting a subject with multiple WIMUs full motion data can begathered. With a potential cost of ownership several orders of magnitude less than traditional camera based motion capture, WIMU systems have potential to be crucially important in supplementing or replacing traditional motion capture and opening up entirely new application areas and potential markets particularly in the rehabilitative, sports & at-home healthcarespaces. Currently WIMUs are underutilized in these areas. A major barrier to adoption is perceived complexity. Sample rates, sensor types & dynamic sensor ranges may need to be adjusted on multiple axes for each device depending on the scenario. As such we present an advanced WIMU in conjunction with a Smart WIMU system to simplify this aspect with 3 usage modes: Manual, Intelligent and Autonomous. Attendees will be able to compare the 3 different modes and see the effects of good andbad set-ups on the quality of data gathered in real time.
Resumo:
A massive change is currently taking place in the manner in which power networks are operated. Traditionally, power networks consisted of large power stations which were controlled from centralised locations. The trend in modern power networks is for generated power to be produced by a diverse array of energy sources which are spread over a large geographical area. As a result, controlling these systems from a centralised controller is impractical. Thus, future power networks will be controlled by a large number of intelligent distributed controllers which must work together to coordinate their actions. The term Smart Grid is the umbrella term used to denote this combination of power systems, artificial intelligence, and communications engineering. This thesis focuses on the application of optimal control techniques to Smart Grids with a focus in particular on iterative distributed MPC. A novel convergence and stability proof for iterative distributed MPC based on the Alternating Direction Method of Multipliers is derived. Distributed and centralised MPC, and an optimised PID controllers' performance are then compared when applied to a highly interconnected, nonlinear, MIMO testbed based on a part of the Nordic power grid. Finally, a novel tuning algorithm is proposed for iterative distributed MPC which simultaneously optimises both the closed loop performance and the communication overhead associated with the desired control.
Resumo:
This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.
Resumo:
The thesis starts with a historical analysis of the development of depression as a concept. Through this inquiry, the controversies behind the apparent consensus about depression’s etiology and treatment are illuminated, suggesting that the understanding of the climbing rates of depression in contemporary Western civilization is still up for grabs. That’s what the thesis sets out to investigate. In order to accomplish this aim, the study builds upon the classical accounts of Georg Simmel, Émile Durkheim and the more contemporary ideas of Dany-Robert Dufour, in dialogue with an array of supplementary theoretical sources. Navigating through this ‘sea’ of extraordinary and different theories, a new avenue of reflections arises, contributing for the sophistication of the questions made about the phenomenon of depression’s rates. The fundamental argument emerging from this theoretical undertaking is that ‘crises of meaninglessness’ that pervade the collective body of Western contemporary societies have, as one of its consequences, the expansion of depression rates. Meaninglessness in contemporary times is the primary object of investigation of the thesis. The concept, in the context of this study, is not understood as merely an effect of the historical decline of shared social norms due to processes of individualization. Rather, it is claimed, it originates from and is reinforced by the ‘political-economic theology of neo-liberalism’ which becomes virtually generalized in the West, erecting money as a God. The study concludes that by undermining culturally established values, ideals, institutions and principles that may block the dissemination of commodities this new transcendence has been challenging the task of signifying life, potentializing – among other subjective difficulties – the diffusion of depression.
Resumo:
This research investigates whether a reconfiguration of maternity services, which collocates consultant- and midwifery-led care, reflects demand and value for money in Ireland. Qualitative and quantitative research is undertaken to investigate demand and an economic evaluation is performed to evaluate the costs and benefits of the different models of care. Qualitative research is undertaken to identify women’s motivations when choosing place of delivery. These data are further used to inform two stated preference techniques: a discrete choice experiment (DCE) and contingent valuation method (CVM). These are employed to identify women’s strengths of preferences for different features of care (DCE) and estimate women’s willingness to pay for maternity care (CVM), which is used to inform a cost-benefit analysis (CBA) on consultant- and midwifery-led care. The qualitative research suggests women do not have a clear preference for consultant or midwifery-led care, but rather a hybrid model of care which closely resembles the Domiciliary Care In and Out of Hospital (DOMINO) scheme. Women’s primary concern during care is safety, meaning women would only utilise midwifery-led care when co-located with consultant-led care. The DCE also finds women’s preferred package of care closely mirrors the DOMINO scheme with 39% of women expected to utilise this service. Consultant- and midwifery-led care would then be utilised by 34% and 27% of women, respectively. The CVM supports this hierarchy of preferences where consultant-led care is consistently valued more than midwifery-led care – women are willing to pay €956.03 for consultant-led care and €808.33 for midwifery-led care. A package of care for a woman availing of consultant- and midwifery-led care is estimated to cost €1,102.72 and €682.49, respectively. The CBA suggests both models of care are cost-beneficial and should be pursued in Ireland. This reconfiguration of maternity services would maximise women’s utility, while fulfilling important objectives of key government policy.
Resumo:
Sinapic acid (SA) is a nutraceutical with known anti-oxidant, anti-microbial, anti-inflammatory, anti-cancer, and anti-anxiety properties. Novel co-crystals of SA were prepared with co-formers belonging to the category of GRAS [isonicotinic acid (INC), nicotinamide (NIA)], non-GRAS [4-pyridinecarbonitrile (PYC)], and active pharmaceutical ingredients (APIs) [6-propyl-2-thiouracil (PTU)] list of compounds. Structural study based on the X-ray crystal structures revealed the intermolecular hydrogen-bonded interactions and molecular packing. The crystal structure of sinapic acid shows the anticipated acid-acid homodimer along with discrete hydrogen bonds between the acid carbonyl and the phenolic moiety. The robust acid-acid homodimer appears to be very stable and is retained in the structures of two co-crystals (SA[middle dot]NIA and SA[middle dot]PYC). In these cases, co-crystallization occurs via intermolecular phenol O-H[three dots, centered]Naromatic hydrogen bonds between the co-formers. In the SA[middle dot]PTU[middle dot]2MeCN co-crystal the acid-acid homodimer gives way to the anticipated acid-amide heterodimer, with the phenolic moiety of SA hydrogen-bonded to acetonitrile. Attempts at obtaining the desolvated co-crystal led to lattice breakdown, thus highlighting the importance of acetonitrile in the formation of the co-crystal. Among the co-crystals examined, SA[middle dot]INC (5 weeks), SA[middle dot]NIA (8 weeks) and SA[middle dot]PYC (5 weeks) were found to be stable under accelerated humidity conditions (40 [degree]C, 75% RH), whereas SA[middle dot]PTU[middle dot]2MeCN decomposed after one week into individual components due to solvent loss.