5 resultados para Mobile Service
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Published Version
Resumo:
Background: The management of childhood obesity is challenging. Aims: Thesis, i) reviews the evidence for lifestyle treatment of obesity, ii) explores cardiometabolic burden in childhood obesity, iii) explores whether changes in body composition predicts change in insulin sensitivity (IS), iv) develops and evaluates a lifestyle obesity intervention; v) develops a mobile health application for obesity treatment and vi) tests the application in a clinical trial. Methods: In Study 1, systematic reviews and meta-analyses of the 12‐month effects of lifestyle and mHealth interventions were conducted. In Study 2, the prevalence of cardiometabolic burden was estimated in a consecutive series of 267 children. In Study 3, body composition was estimated with bioelectrical impedance analysis (BIA) and dual x-ray absorptiometry (DXA) and linear regression analyses were used to estimate the extent to which each methods predicted change in IS. Study 4 describes the development of the Temple Street W82GO Healthy Lifestyle intervention for clinical obesity in children and a controlled study of treatment effect in 276 children is reported. Study 5 describes the development and testing of the Reactivate Mobile Obesity Application. Study 6 outlines the development and preliminary report from a clinical effectiveness trial of Reactivate. Results: In Study 1, meta--‐analyses BMI SDS changed by -0.16 (-0.24,‐0.07, p<0.01) and -0.03 (-0.13, 0.06, p=0.48). In study 2, cardiometabolic comorbidities were common (e.g. hypertension in 49%) and prevalence increased as obesity level increased. In Study 3, BC changes significantly predicted changes in IS. In Study 4, BMI SDS was significantly reduced in W82GO compared to controls (p<0.001). In Study 5, the Reactivate application had good usability indices and preliminary 6‐month process report data from Study 6, revealed a promising effect for Reactivate. Conclusions: W82GO and Reactivate are promising forms of treatment.
Resumo:
This paper introduces the original concept of a cloud personal assistant, a cloud service that manages the access of mobile clients to cloud services. The cloud personal assistant works in the cloud on behalf of its owner: it discovers services, invokes them, stores the results and history, and delivers the results to the mobile user immediately or when the user requests them. Preliminary experimental results that demonstrate the concept are included.
Resumo:
The mobile cloud computing paradigm can offer relevant and useful services to the users of smart mobile devices. Such public services already exist on the web and in cloud deployments, by implementing common web service standards. However, these services are described by mark-up languages, such as XML, that cannot be comprehended by non-specialists. Furthermore, the lack of common interfaces for related services makes discovery and consumption difficult for both users and software. The problem of service description, discovery, and consumption for the mobile cloud must be addressed to allow users to benefit from these services on mobile devices. This paper introduces our work on a mobile cloud service discovery solution, which is utilised by our mobile cloud middleware, Context Aware Mobile Cloud Services (CAMCS). The aim of our approach is to remove complex mark-up languages from the description and discovery process. By means of the Cloud Personal Assistant (CPA) assigned to each user of CAMCS, relevant mobile cloud services can be discovered and consumed easily by the end user from the mobile device. We present the discovery process, the architecture of our own service registry, and service description structure. CAMCS allows services to be used from the mobile device through a user's CPA, by means of user defined tasks. We present the task model of the CPA enabled by our solution, including automatic tasks, which can perform work for the user without an explicit request.
Resumo:
Mobile Cloud Computing promises to overcome the physical limitations of mobile devices by executing demanding mobile applications on cloud infrastructure. In practice, implementing this paradigm is difficult; network disconnection often occurs, bandwidth may be limited, and a large power draw is required from the battery, resulting in a poor user experience. This thesis presents a mobile cloud middleware solution, Context Aware Mobile Cloud Services (CAMCS), which provides cloudbased services to mobile devices, in a disconnected fashion. An integrated user experience is delivered by designing for anticipated network disconnection, and low data transfer requirements. CAMCS achieves this by means of the Cloud Personal Assistant (CPA); each user of CAMCS is assigned their own CPA, which can complete user-assigned tasks, received as descriptions from the mobile device, by using existing cloud services. Service execution is personalised to the user's situation with contextual data, and task execution results are stored with the CPA until the user can connect with his/her mobile device to obtain the results. Requirements for an integrated user experience are outlined, along with the design and implementation of CAMCS. The operation of CAMCS and CPAs with cloud-based services is presented, specifically in terms of service description, discovery, and task execution. The use of contextual awareness to personalise service discovery and service consumption to the user's situation is also presented. Resource management by CAMCS is also studied, and compared with existing solutions. Additional application models that can be provided by CAMCS are also presented. Evaluation is performed with CAMCS deployed on the Amazon EC2 cloud. The resource usage of the CAMCS Client, running on Android-based mobile devices, is also evaluated. A user study with volunteers using CAMCS on their own mobile devices is also presented. Results show that CAMCS meets the requirements outlined for an integrated user experience.