2 resultados para Minimization algorithms
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Patient awareness and concern regarding the potential health risks from ionizing radiation have peaked recently (Coakley et al., 2011) following widespread press and media coverage of the projected cancer risks from the increasing use of computed tomography (CT) (Berrington et al., 2007). The typical young and educated patient with inflammatory bowel disease (IBD) may in particular be conscious of his/her exposure to ionising radiation as a result of diagnostic imaging. Cumulative effective doses (CEDs) in patients with IBD have been reported as being high and are rising, primarily due to the more widespread and repeated use of CT (Desmond et al., 2008). Radiologists, technologists, and referring physicians have a responsibility to firstly counsel their patients accurately regarding the actual risks of ionizing radiation exposure; secondly to limit the use of those imaging modalities which involve ionising radiation to clinical situations where they are likely to change management; thirdly to ensure that a diagnostic quality imaging examination is acquired with lowest possible radiation exposure. In this paper, we synopsize available evidence related to radiation exposure and risk and we report advances in low-dose CT technology and examine the role for alternative imaging modalities such as ultrasonography or magnetic resonance imaging which avoid radiation exposure.
Resumo:
Many studies have shown the considerable potential for the application of remote-sensing-based methods for deriving estimates of lake water quality. However, the reliable application of these methods across time and space is complicated by the diversity of lake types, sensor configuration, and the multitude of different algorithms proposed. This study tested one operational and 46 empirical algorithms sourced from the peer-reviewed literature that have individually shown potential for estimating lake water quality properties in the form of chlorophyll-a (algal biomass) and Secchi disc depth (SDD) (water transparency) in independent studies. Nearly half (19) of the algorithms were unsuitable for use with the remote-sensing data available for this study. The remaining 28 were assessed using the Terra/Aqua satellite archive to identify the best performing algorithms in terms of accuracy and transferability within the period 2001–2004 in four test lakes, namely Vänern, Vättern, Geneva, and Balaton. These lakes represent the broad continuum of large European lake types, varying in terms of eco-region (latitude/longitude and altitude), morphology, mixing regime, and trophic status. All algorithms were tested for each lake separately and combined to assess the degree of their applicability in ecologically different sites. None of the algorithms assessed in this study exhibited promise when all four lakes were combined into a single data set and most algorithms performed poorly even for specific lake types. A chlorophyll-a retrieval algorithm originally developed for eutrophic lakes showed the most promising results (R2 = 0.59) in oligotrophic lakes. Two SDD retrieval algorithms, one originally developed for turbid lakes and the other for lakes with various characteristics, exhibited promising results in relatively less turbid lakes (R2 = 0.62 and 0.76, respectively). The results presented here highlight the complexity associated with remotely sensed lake water quality estimates and the high degree of uncertainty due to various limitations, including the lake water optical properties and the choice of methods.