3 resultados para Microsatellite Markers

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Restless Legs Syndrome (RLS) is a common neurological disorder affecting nearly 15% of the general population. Ironically, RLS can be described as the most common condition one has never heard of. It is usually characterised by uncomfortable, unpleasant sensations in the lower limbs inducing an uncontrollable desire to move the legs. RLS exhibits a circadian pattern with symptoms present predominantly in the evening or at night, thus leading to sleep disruption and daytime somnolence. RLS is generally classified into primary (idiopathic) and secondary (symptomatic) forms. Primary RLS includes sporadic and familial cases of which the age of onset is usually less than 45 years and progresses slowly with a female to male ratio of 2:1. Secondary forms often occur as a complication of another health condition, such as iron deficiency or thyroid dysfunction. The age of onset is usually over 45 years, with an equal male to female ratio and more rapid progression. Ekbom described the familial component of the disorder in 1945 and since then many studies have been published on the familial forms of the disorder. Molecular genetic studies have so far identified ten loci (5q, 12q, 14p, 9p, 20p, 16p, 19p, 4q, 17p). No specific gene within these loci has been identified thus far. Association mapping has highlighted a further five areas of interest. RLS6 has been found to be associated with SNPs in the BTBD9 gene. Four other variants were found within intronic and intergenic regions of MEIS1, MAP2K5/LBXCOR1, PTPRD and NOS1. The pathophysiology of RLS is complex and remains to be fully elucidated. Conditions associated with secondary RLS, such as pregnancy or end-stage renal disease, are characterised by iron deficiency, which suggests that disturbed iron homeostasis plays a role. Dopaminergic dysfunction in subcortical systems also appears to play a central role. An ongoing study within the Department of Pathology (University College Cork) is investigating the genetic characteristics of RLS in Irish families. A three generation RLS pedigree RLS3002 consisting of 11 affected and 7 unaffected living family members was recruited. The family had been examined for four of the known loci (5q, 12q, 14p and 9p) (Abdulrahim 2008). The aim of this study was to continue examining this Irish RLS pedigree for possible linkage to the previously described loci and associated regions. Using informative microsatellite markers linkage was excluded to the loci on 5q, 12q, 14p, 9p, 20p, 16p, 19p, 4q, 17p and also within the regions reported to be associated with RLS. This suggested the presence of a new unidentified locus. A genome-wide scan was performed using two microsatellite marker screening sets (Research Genetics Inc. Mapping set and the Applied Biosystems Linkage mapping set version 2.5). Linkage analysis was conducted under an autosomal dominant model with a penetrance of 95% and an allele frequency of 0.01. A maximum LOD score of 3.59 at θ=0.00 for marker D19S878 indicated significant linkage on chromosome 19p. Haplotype analysis defined a genetic region of 6.57 cM on chromosome 19p13.3, corresponding to 2.5 Mb. There are approximately 100 genes annotated within the critical region. Sequencing of two candidate genes, KLF16 and GAMT, selected on the assumed pathophysiology of RLS, did not identify any sequence variant. This study provides evidence of a novel RLS locus in an Irish pedigree, thus supporting the picture of RLS as a genetically heterogeneous trait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was undertaken to investigate the general biology, including the reproductive cycle and health status, of two clam taxa in Irish waters, with particular reference to the Irish Sea area. Monthly samples of the soft shell clam, Mya arenaria, were collected from Bannow Bay, Co. Wexford, Ireland, for sixteen months, and of the razor clam, Ensis spp. from the Skerries region (Irish Sea) between June 2010 and September 2011. In 2010, M. arenaria in Bannow Bay matured over the summer months, with both sexes either ripe or spawning by August. The gonads of both sexes of E. siliqua developed over autumn and winter 2010, with the first spawning individuals being recorded in January 2011. Two unusually cold winters, followed by a warmer than average spring, appear to have affected M. arenaria and E. siliqua gametogenesis at these sites. It was noted that wet weight of E. siliqua dropped significantly in the summer of both 2010 and 2011, after spawning, which may impact on the economic viability of fishing during this period. Additional samples of M. arenaria were collected at Flaxfort (Ireland), and Ensis spp. at Oxwich (Wales), and the pathology of all clams was examined using both histological and molecular methods. No pathogenic conditions were observed in M. arenaria while Prokaryote inclusions, trematode parasites, Nematopsis spp. and inflammatory pathologies were observed at low incidences in razor clams from Ireland but not from Wales; the first time these conditions have been reported in Ensis spp. in northern European waters. Mya arenaria from sites in Europe and eastern and western North America were investigated for genetic variation using both mitochondrial (cytochrome oxidase I (COI) and 16S ribosomal RNA genes) and nuclear markers (10 microsatellite loci). Both mitochondrial CO1 and all nuclear markers showed reduced levels of variation in certain European samples, with significant differences in haplotype and allelic composition between most samples, particularly those from the two different continents, but with the same common haplotypes or alleles throughout the range. The appearance of certain unique rare haplotypes and microsatellite alleles in the European samples suggest a complicated origin involving North American colonization but also possible southern European Pleistocene refugia. Specimens of Ensis spp. were obtained from five coastal areas around Ireland and Wales and species-specific PCR primers were used to amplify the internal transcribed spacer region 1 (ITS1) and the mitochondrial DNA CO1 gene and all but 15 razor clams were identified as Ensis siliqua. Future investigations should focus on continued monitoring of reproductive biology and pathology of the two clam taxa (in particular, to assess the influence of environmental change), and on genetics of southern European M. arenaria and sequencing the CO1 gene in Ensis individuals to clarify species identity