14 resultados para Microbiome
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The ability to adapt to and respond to increases in external osmolarity is an important characteristic that enables bacteria to survive and proliferate in different environmental niches. When challenged with increased osmolarity, due to sodium chloride (NaCl) for example, bacteria elicit a phased response; firstly via uptake of potassium (K+), which is known as the primary response. This primary response is followed by the secondary response which is characterised by the synthesis or uptake of compatible solutes (osmoprotectants). The overall osmotic stress response is much broader however, involving many diverse cellular systems and processes. These ancillary mechanisms are arguably more interesting and give a more complete view of the osmotic stress response. The aim of this thesis was to identify novel genetic loci from the human gut microbiota that confer increased tolerance to osmotic stress using a functional metagenomic approach. Functional metagenomics is a powerful tool that enables the identification of novel genes from as yet uncultured bacteria from diverse environments through cloning, heterologous expression and phenotypic identification of a desired trait. Functional metagenomics does not rely on any previous sequence information to known genes and can therefore enable the discovery of completely novel genes and assign functions to new or known genes. Using a functional metagenomic approach, we have assigned a novel function to previously annotated genes; murB, mazG and galE, as well as a putative brp/blh family beta-carotene 15,15’-monooxygenase. Finally, we report the identification of a completely novel salt tolerance determinant with no current known homologues in the databases. Overall the genes identified originate from diverse taxonomic and phylogenetic groups commonly found in the human gastrointestinal (GI) tract, such as Collinsella and Eggerthella, Akkermansia and Bacteroides from the phyla Actinobacteria, Verrucomicrobia and Bacteroidetes, respectively. In addition, a number of the genes appear to have been acquired via lateral gene transfer and/or encoded on a prophage. To our knowledge, this thesis represents the first investigation to identify novel genes from the human gut microbiota involved in the bacterial osmotic stress response.
Resumo:
Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute "cell motility" category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the beta- and gamma-proteobacteria. Many fliC genes were deduced to be under the control of sigma(28). The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13-4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (<= 1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved metagenome assembly from short reads will be required to facilitate in silico analyses of complete complex biochemical pathways for low-abundance target species from shotgun metagenomes.
Resumo:
Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising similar to ∼60% and similar to ∼72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (similar to ∼11% of sequences). Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity) identified in sponges, with 4 and 6 dominant OTUs comprising similar to ∼88% and similar to ∼89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (similar to ∼0.2% and similar to ∼0.3% of sequences) were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.
Resumo:
Asthma is a chronic respiratory disease whose prevalence is increasing in the western world. Recently research has begun to focus on the role the microbiome plays in asthma pathogenesis in the hope of further understanding this respiratory disorder. Considered sterile until recently, the lungs have revealed themselves to contain a unique microbiota. A shift towards molecular methods for the quantification and sequencing of microbial DNA has revealed that the airways harbour a unique microbiota with apparent, reproducible differences present between healthy and diseased lungs. There is a hope that in classifying the microbial load of the asthmatic airway an insight may be afforded as to the possible role pulmonary microbes may have in propagating an asthmatic airway response. This could potentially pave the way for new therapeutic strategies for the treatment of chronic lung conditions such as asthma.
Resumo:
Background: Disease flares of established atopic dermatitis (AD) are generally associated with a low-diversity skin microbiota and Staphylococcus aureus dominance. The temporal transition of the skin microbiome between early infancy and the dysbiosis of established AD is unknown. Methods: We randomly selected 50 children from the Cork Babies After SCOPE: Evaluating the Longitudinal Impact Using Neurological and Nutritional Endpoints (BASELINE) longitudinal birth cohort for microbiome sampling at 3 points in the first 6 months of life at 4 skin sites relevant to AD: the antecubital and popliteal fossae, nasal tip, and cheek. We identified 10 infants with AD and compared them with 10 randomly selected control infants with no AD. We performed bacterial 16S ribosomal RNA sequencing and analysis directly from clinical samples. Results: Bacterial community structures and diversity shifted over time, suggesting that age strongly affects the skin microbiome in infants. Unlike established AD, these patients with infantile AD did not have noticeably dysbiotic communities before or with disease and were not colonized by S aureus. In comparing patients and control subjects, infants who had affected skin at month 12 had statistically significant differences in bacterial communities on the antecubital fossa at month 2 compared with infants who were unaffected at month 12. In particular, commensal staphylococci were significantly less abundant in infants affected at month 12, suggesting that this genus might protect against the later development of AD. Conclusions: This study suggests that 12-month-old infants with AD were not colonized with S aureus before having AD. Additional studies are needed to confirm whether colonization with commensal staphylococci modulates skin immunity and attenuates development of AD.
Resumo:
Visceral pain is a debilitating symptom of irritable bowel syndrome (IBS), a disorder affecting up to 30% of adults. A better understanding of the mechanisms underlying visceral hypersensitivity may facilitate development of more targeted therapies, improving the quality of life of these individuals. The studies performed in this thesis were designed to investigate important factors of visceral pain, including early-life manipulations, genetic predisposition and sex hormones. Maternal separation (MS) consistently reproduces visceral hypersensitivity and altered anxiety-like behaviours in rats, symptoms associated with IBS. It has been found that 5-HT2B receptor antagonism blocks visceral pain but no difference in relative 5-HT2B receptor mRNA expression was found in hippocampus, amygdala and colon. The neuronal activation patterns of prefrontal cortex and amygdala of MS rats were then investigated. MS animals are characterised by differential activation of the prefrontal cortex (anterior cingulate cortex (ACC), infralibic cortex, prelimbic cortex) as well as the central nucleus of the amygdala (CeA). Genetic factors also contribute to pain syndromes such as IBS. We utilised the Wistar Kyoto (WKY) rat, a stress-sensitive strain, as an animal model of brain-gut axis dysfunction. WKY rats have a lower expression of the glutamate transporter EAAT2 and mGlu4 receptor in the ACC. Another early-life factor that can increase susceptibility to functional gastrointestinal symptoms later life is disruption of the gut microbiota, thus early-life antibiotic treatment was used to assess this effect. Antibiotic treatment induced visceral hypersensitivity in adulthood and may be related to observed reductions in spinal cord alpha-2A adrenoreceptor (adra2A) mRNA. Lastly, we investigated sex differences in visceral sensitivity. EAAT1 & 2 mRNA levels are lower in females, potentially increasing glutamatergic concentration at the symaptic level. Moreover, NR1 and NR2B subunits mRNA of NMDA receptor were increased in caudal ACC of females. These findings may account for sex differences in visceral sensitivity.
Resumo:
Establishment of the intestinal microbiota commences at birth and this colonisation is influenced by a number of factors including mode of delivery, gestational age, mode of feeding, environmental factors and host genetics. As this initial establishment may well influence the health of an individual later in life, it is imperative to understand this process. Therefore, this thesis set out to investigate how early infant nutrition influences the development of a healthy gut microbiota. As part of the INFANTMET project, the intestinal microbiota of 199 breastfed infants was investigated using both culture-dependent and culture-independent approaches. This study revealed that delivery mode and gestational age had a significant impact on early microbial communities. In order to understand host genotype-microbiota interactions, the gut microbiota composition of dichorionic triplets was also investigated. The results suggested that initially host genetics play a significant role in the composition of an individual’s gut microbiota, but by month 12 environmental factors are the major determinant. To investigate the origin of hydrogen sulphide in a case of nondrug- induced sulfhemoglobinemia in a preterm infant, the gut microbiota composition was determined. This analysis revealed the presence of Morganella morganii, a producer of hydrogen sulphide and hemolysins, at a relative abundance 38%, which was not detected in control infants. Following on from this, the negative and short term consequences of intrapartum antibiotic prophylaxis exposure on the early infant intestinal microbiota composition were demonstrated, particularly in breast-fed infants, which are recovered by day 30. Finally, the composition of the breast milk microbiota over the first three months of life was characterised. A core of 12 genera were identified amongst women and the remainder comprised some 195 genera which were individual specific and subject to variations over time. The results presented in this thesis have demonstrated that the development of the infant gut microbiota is complex and highly individual. Clear alterations in the intestinal microbiota establishment process in C-section delivered, preterm and antibiotic exposed infants were shown. Taken together, long-term health benefits for infants, particularly those vulnerable groups, may be conferred through the design of probiotic and prebiotic food ingredients and supplements.
Resumo:
BACKGROUND: The role of the microbiome has become synonymous with human health and disease. Bile acids, as essential components of the microbiome, have gained sustained credibility as potential modulators of cancer progression in several disease models. At physiological concentrations, bile acids appear to influence cancer phenotypes, although conflicting data surrounds their precise physiological mechanism of action. Previously, we demonstrated bile acids destabilised the HIF-1α subunit of the Hypoxic-Inducible Factor-1 (HIF-1) transcription factor. HIF-1 overexpression is an early biomarker of tumour metastasis and is associated with tumour resistance to conventional therapies, and poor prognosis in a range of different cancers. METHODS: Here we investigated the effects of bile acids on the cancer growth and migratory potential of cell lines where HIF-1α is known to be active under hypoxic conditions. HIF-1α status was investigated in A-549 lung, DU-145 prostate and MCF-7 breast cancer cell lines exposed to bile acids (CDCA and DCA). Cell adhesion, invasion, migration was assessed in DU-145 cells while clonogenic growth was assessed in all cell lines. RESULTS: Intracellular HIF-1α was destabilised in the presence of bile acids in all cell lines tested. Bile acids were not cytotoxic but exhibited greatly reduced clonogenic potential in two out of three cell lines. In the migratory prostate cancer cell line DU-145, bile acids impaired cell adhesion, migration and invasion. CDCA and DCA destabilised HIF-1α in all cells and significantly suppressed key cancer progression associated phenotypes; clonogenic growth, invasion and migration in DU-145 cells. CONCLUSIONS: These findings suggest previously unobserved roles for bile acids as physiologically relevant molecules targeting hypoxic tumour progression.
Resumo:
The significance of the gut microbiota as a determinant of drug pharmacokinetics and accordingly therapeutic response is of increasing importance with the advent of modern medicines characterised by low solubility and/or permeability, or modified-release. These physicochemical properties and release kinetics prolong drug residence times within the gastrointestinal tract, wherein biotransformation by commensal microbes can occur. As the evidence base in support of this supplementary metabolic “organ” expands, novel opportunities to engineer the microbiota for clinical benefit have emerged. This review provides an overview of microbe-mediated alteration of drug pharmacokinetics, with particular emphasis on studies demonstrating proof of concept in vivo. Additionally, recent advances in modulating the microbiota to improve clinical response to therapeutics are explored.
Resumo:
There is a growing recognition of the importance of the commensal intestinal microbiota in the development and later function of the central nervous system. Research using germ-free mice (mice raised without any exposure to microorganisms) has provided some of the most persuasive evidence for a role of these bacteria in gut-brain signalling. Key findings show that the microbiota is necessary for normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Furthermore, the microbiota maintains central nervous system homeostasis by regulating immune function and blood brain barrier integrity. Studies have also found that the gut microbiota influences neurotransmitter, synaptic, and neurotrophic signalling systems and neurogenesis. The principle advantage of the germ-free mouse model is in proof-of-principle studies and that a complete microbiota or defined consortiums of bacteria can be introduced at various developmental time points. However, a germ-free upbringing can induce permanent neurodevelopmental deficits that may deem the model unsuitable for specific scientific queries that do not involve early-life microbial deficiency. As such, alternatives and complementary strategies to the germ-free model are warranted and include antibiotic treatment to create microbiota-deficient animals at distinct time points across the lifespan. Increasing our understanding of the impact of the gut microbiota on brain and behavior has the potential to inform novel management strategies for stress-related gastrointestinal and neuropsychiatric disorders.
Resumo:
Background: Preclinical studies have identified certain probiotics as psychobiotics a live microorganisms with a potential mental health benefit. Lactobacillus rhamnosus (JB-1) has been shown to reduce stress-related behaviour, corticosterone release and alter central expression of GABA receptors in an anxious mouse strain. However, it is unclear if this single putative psychobiotic strain has psychotropic activity in humans. Consequently, we aimed to examine if these promising preclinical findings could be translated to healthy human volunteers. Objectives: To determine the impact of L. rhamnosus on stress-related behaviours, physiology, inflammatory response, cognitive performance and brain activity patterns in healthy male participants. An 8 week, randomized, placebo-controlled, cross-over design was employed. Twenty-nine healthy male volunteers participated. Participants completed self-report stress measures, cognitive assessments and resting electroencephalography (EEG). Plasma IL10, IL1β, IL6, IL8 and TNFα levels and whole blood Toll-like 4 (TLR-4) agonist-induced cytokine release were determined by multiplex ELISA. Salivary cortisol was determined by ELISA and subjective stress measures were assessed before, during and after a socially evaluated cold pressor test (SECPT). Results: There was no overall effect of probiotic treatment on measures of mood, anxiety, stress or sleep quality and no significant effect of probiotic over placebo on subjective stress measures, or the HPA response to the SECPT. Visuospatial memory performance, attention switching, rapid visual information processing, emotion recognition and associated EEG measures did not show improvement over placebo. No significant anti-inflammatory effects were seen as assessed by basal and stimulated cytokine levels. Conclusions: L. rhamnosus was not superior to placebo in modifying stress-related measures, HPA response, inflammation or cognitive performance in healthy male participants. These findings highlight the challenges associated with moving promising preclinical studies, conducted in an anxious mouse strain, to healthy human participants. Future interventional studies investigating the effect of this psychobiotic in populations with stress-related disorders are required.
Resumo:
Background: Alterations in intestinal microbiota have been correlated with a growing number of diseases. Investigating the faecal microbiota is widely used as a non-invasive and ethically simple proxy for intestinal biopsies. There is an urgent need for collection and transport media that would allow faecal sampling at distance from the processing laboratory, obviating the need for same-day DNA extraction recommended by previous studies of freezing and processing methods for stool. We compared the faecal bacterial DNA quality and apparent phylogenetic composition derived using a commercial kit for stool storage and transport (DNA Genotek OMNIgene GUT) with that of freshly extracted samples, 22 from infants and 20 from older adults. Results: Use of the storage vials increased the quality of extracted bacterial DNA by reduction of DNA shearing. When infant and elderly datasets were examined separately, no differences in microbiota composition were observed due to storage. When the two datasets were combined, there was a difference according to a Wilcoxon test in the relative proportions of Faecalibacterium, Sporobacter, Clostridium XVIII, and Clostridium XlVa after 1 week's storage compared to immediately extracted samples. After 2 weeks' storage, Bacteroides abundance was also significantly different, showing an apparent increase from week 1 to week 2. The microbiota composition of infant samples was more affected than that of elderly samples by storage, with significantly higher Spearman distances between paired freshly extracted and stored samples (p
Resumo:
Researchers interested in the neurobiology of the acute stress response in humans require a valid and reliable acute stressor that can be used under experimental conditions. The Trier Social Stress Test (TSST) provides such a testing platform. It induces stress by requiring participants to make an interview-style presentation, followed by a surprise mental arithmetic test, in front of an interview panel who do not provide feedback or encouragement. In this review, we outline the methodology of the TSST, and discuss key findings under conditions of health and stress-related disorder. The TSST has unveiled differences in males and females, as well as different age groups, in their neurobiological response to acute stress. The TSST has also deepened our understanding of how genotype may moderate the cognitive neurobiology of acute stress, and exciting new inroads have been made in understanding epigenetic contributions to the biological regulation of the acute stress response using the TSST. A number of innovative adaptations have been developed which allow for the TSST to be used in group settings, with children, in combination with brain imaging, and with virtual committees. Future applications may incorporate the emerging links between the gut microbiome and the stress response. Future research should also maximise use of behavioural data generated by the TSST. Alternative acute stress paradigms may have utility over the TSST in certain situations, such as those that require repeat testing. Nonetheless, we expect that the TSST remains the gold standard for examining the cognitive neurobiology of acute stress in humans.