2 resultados para Microbial carbon
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Marine sponges (phylum Porifera) are the oldest extant metazoan animals on earth and host large populations of symbiotic microbes: Bacteria, Archaea and unicellular Eukaryota. Those microbes play ecological functions which are essential to the health of the host including carbon, nitrogen and sulfur cycling as well as host defence through the production of bioactive secondary metabolites which protect against infection and predation. The diversity of sponge-associated microbes is remarkable with thousands of OTUs reported from individual sponge species. Amongst those populations are sponge-specific microbes which may be specific to sponges or specific to sponge species. While marine natural product discovery concerns many animal phyla, Porifera account for the largest proportion of novel compounds. Evidence suggests that many of these compounds are the products of symbiotic microbes. Descriptions of sponge-associated microbial community structures have been advanced by the development of next-generation sequencing technologies while the discovery and exploitation of sponge derived bioactive compounds has increased due to developments in sequence-based and function-based metagenomics. Here, we use pyrosequencing to describe the bacterial communities associated with two shallow, temperate water sponges (Raspailia ramosa and Stelligera stuposa) from Irish coastal waters and to describe the bacterial and archaeal communities of a single sponge species (Inflatella pellicula) from two different depths in deep waters in the Atlantic Ocean, including at a depth of 2900m, a depth far greater than that of any previous sequence-based sponge-microbe investigation. We identified diverse microbial communities in all sponges and the presence of sponge-specific taxa recruiting to previously described and novel spongespecific clusters. We also identified archaeal communities which dominated sponge-microbe communities. We demonstrate that sponge-associated microbial communities differ from seawater communities indicating host selection processes. We used sequence-based metagenomic techniques to identify genes of potential industrial and pharmacological interest in the metagenomes of various sponge species and functionbased metagenomic screening in an attempt to identify lipolytic and antibacterial activities from metagenomic clones from the metagenome of the marine sponge Stelletta normani. In addition we have cultured diverse bacterial species from sponge tissues, many of which display antimicrobial activities against clinically relevant bacterial and yeast test strains. Other isolates represent novel species in the genus Maribacter and require emendments to the description of that genus.
Resumo:
Petrochemical plastics/polymers are a common feature of day to day living as they occur in packaging, furniture, mobile phones, computers, construction equipment etc. However, these materials are produced from non-renewable materials and are resistant to microbial degradation in the environment. Considerable research has therefore been carried out into the production of sustainable, biodegradable polymers, amenable to microbial catabolism to CO2 and H2O. A key group of microbial polyesters, widely considered as optimal replacement polymers, are the Polyhydroxyalkaonates (PHAs). Primary research in this area has focused on using recombinant pure cultures to optimise PHA yields, however, despite considerable success, the high costs of pure culture fermentation have thus far hindered the commercial viability of PHAs thus produced. In more recent years work has begun to focus on mixed cultures for the optimisation of PHA production, with waste incorporations offering optimal production cost reductions. The scale of dairy processing in Ireland, and the high organic load wastewaters generated, represent an excellent potential substrate for bioconversion to PHAs in a mixed culture system. The current study sought to investigate the potential for such bioconversion in a laboratory scale biological system and to establish key operational and microbial characteristics of same. Two sequencing batch reactors were set up and operated along the lines of an enhanced biological phosphate removal (EBPR) system, which has PHA accumulation as a key step within repeated rounds of anaerobic/aerobic cycling. Influents to the reactors varied only in the carbon sources provided. Reactor 1 received artificial wastewater with acetate alone, which is known to be readily converted to PHA in the anaerobic step of EBPR. Reactor 2 wastewater influent contained acetate and skim milk to imitate a dairy processing effluent. Chemical monitoring of nutrient remediation within the reactors as continuously applied and EBPR consistent performances observed. Qualitative analysis of the sludge was carried out using fluorescence microscopy with Nile Blue A lipophillic stain and PHA production was confirmed in both reactors. Quantitative analysis via HPLC detection of crotonic acid derivatives revealed the fluorescence to be short chain length Polyhydroxybutyrate, with biomass dry weight accumulations of 11% and 13% being observed in reactors 1 and 2, respectively. Gas Chromatography-Mass Spectrometry for medium chain length methyl ester derivatives revealed the presence of hydroxyoctanoic, -decanoic and -dodecanoic acids in reactor 1. Similar analyses in reactor 2 revealed monomers of 3-hydroxydodecenoic and 3-hydroxytetradecanoic acids. Investigation of the microbial ecology of both reactors as conducted in an attempt to identify key species potentially contributing to reactor performance. Culture dependent investigations indicated that quite different communities were present in both reactors. Reactor 1 isolates demonstrated the following species distributions Pseudomonas (82%), Delftia acidovorans (3%), Acinetobacter sp. (5%) Aminobacter sp., (3%) Bacillus sp. (3%), Thauera sp., (3%) and Cytophaga sp. (3%). Relative species distributions among reactor 2 profiled isolates were more evenly distributed between Pseudoxanthomonas (32%), Thauera sp (24%), Acinetobacter (24%), Citrobacter sp (8%), Lactococcus lactis (5%), Lysinibacillus (5%) and Elizabethkingia (2%). In both reactors Gammaproteobacteria dominated the cultured isolates. Culture independent 16S rRNA gene analyses revealed differing profiles for both reactors. Reactor 1 clone distribution was as follows; Zooglea resiniphila (83%), Zooglea oryzae (2%), Pedobacter composti (5%), Neissericeae sp. (2%) Rhodobacter sp. (2%), Runella defluvii (3%) and Streptococcus sp. (3%). RFLP based species distribution among the reactor 2 clones was as follows; Runella defluvii (50%), Zoogloea oryzae (20%), Flavobacterium sp. (9%), Simplicispira sp. (6%), Uncultured Sphingobacteria sp. (6%), Arcicella (6%) and Leadbetterella bysophila (3%). Betaproteobacteria dominated the 16S rRNA gene clones identified in both reactors. FISH analysis with Nile Blue dual staining resolved these divergent findings, identifying the Betaproteobacteria as dominant PHA accumulators within the reactor sludges, although species/strain specific allocations could not be made. GC analysis of the sludge had indicated the presence of both medium chain length as well short chain length PHAs accumulating in both reactors. In addition the cultured isolates from the reactors had been identified previously as mcl and scl PHA producers, respectively. Characterisations of the PHA monomer profiles of the individual isolates were therefore performed to screen for potential novel scl-mcl PHAs. Nitrogen limitation driven PHA accumulation in E2 minimal media revealed a greater propensity among isoates for mcl-pHA production. HPLC analysis indicated that PHB production was not a major feature of the reactor isolates and this was supported by the low presence of scl phaC1 genes among PCR screened isolates. A high percentage distribution of phaC2 mcl-PHA synthase genes was recorded, with the majority sharing high percentage homology with class II synthases from Pseudomonas sp. The common presence of a phaC2 homologue was not reflected in the production of a common polymer. Considerable variation was noted in both the monomer composition and ratios following GC analysis. While co-polymer production could not be demonstrated, potentially novel synthase substrate specificities were noted which could be exploited further in the future.