5 resultados para Metal Active Gas (MAG)
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Electron beam-induced deposition (EBID) is a direct write process where an electron beam locally decomposes a precursor gas leaving behind non-volatile deposits. It is a fast and relatively in-expensive method designed to develop conductive (metal) or isolating (oxide) nanostructures. Unfortunately the EBID process results in deposition of metal nanostructures with relatively high resistivity because the gas precursors employed are hydrocarbon based. We have developed deposition protocols using novel gas-injector system (GIS) with a carbon free Pt precursor. Interconnect type structures were deposited on preformed metal architectures. The obtained structures were analysed by cross-sectional TEM and their electrical properties were analysed ex-situ using four point probe electrical tests. The results suggest that both the structural and electrical characteristics differ significantly from those of Pt interconnects deposited by conventional hydrocarbon based precursors, and show great promise for the development of low resistivity electrical contacts.
Resumo:
As silicon based devices in integrated circuits reach the fundamental limits of dimensional scaling there is growing research interest in the use of high electron mobility channel materials, such as indium gallium arsenide (InGaAs), in conjunction with high dielectric constant (high-k) gate oxides, for Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) based devices. The motivation for employing high mobility channel materials is to reduce power dissipation in integrated circuits while also providing improved performance. One of the primary challenges to date in the field of III-V semiconductors has been the observation of high levels of defect densities at the high-k/III-V interface, which prevents surface inversion of the semiconductor. The work presented in this PhD thesis details the characterization of MOS devices incorporating high-k dielectrics on III-V semiconductors. The analysis examines the effect of modifying the semiconductor bandgap in MOS structures incorporating InxGa1-xAs (x: 0, 0.15. 0.3, 0.53) layers, the optimization of device passivation procedures designed to reduce interface defect densities, and analysis of such electrically active interface defect states for the high-k/InGaAs system. Devices are characterized primarily through capacitance-voltage (CV) and conductance-voltage (GV) measurements of MOS structures both as a function of frequency and temperature. In particular, the density of electrically active interface states was reduced to the level which allowed the observation of true surface inversion behavior in the In0.53Ga0.47As MOS system. This was achieved by developing an optimized (NH4)2S passivation, minimized air exposure, and atomic layer deposition of an Al2O3 gate oxide. An extraction of activation energies allows discrimination of the mechanisms responsible for the inversion response. Finally a new approach is described to determine the minority carrier generation lifetime and the oxide capacitance in MOS structures. The method is demonstrated for an In0.53Ga0.47As system, but is generally applicable to any MOS structure exhibiting a minority carrier response in inversion.
Resumo:
The ability to tune the structural and chemical properties of colloidal nanoparticles (NPs), make them highly advantageous for studying activity and selectivity dependent catalytic behaviour. Incorporating pre-synthesized colloidal NPs into porous supports materials remains a challenge due to poor wetting and pore permeability. In this report monodisperse, composition controlled AgPd alloy NPs were synthesised and embedded into SBA-15 using supercritical carbon dioxide and hexane. Supercritical fluid impregnation resulted in high metal loading without the requirement for surface pre-treatments. The catalytic activity, reaction profiles and recyclability of the alloy NPs embedded in SBA-15 and immobilised on non-porous SiO2 are evaluated. The NPs incorporated within the SBA-15 porous network showed significantly greater recyclability performance compared to non-porous SiO2.
Resumo:
The different oxidation states of chromium allow its bulk oxide form to be reducible, facilitating the oxygen vacancy formation process, which is a key property in applications such as catalysis. Similar to other useful oxides such as TiO2, and CeO2, the effect of substitutional metal dopants in bulk Cr2O3 and its effect on the electronic structure and oxygen vacancy formation are of interest, particularly in enhancing the latter. In this paper, density functional theory (DFT) calculations with a Hubbard + U correction (DFT+U) applied to the Cr 3d and O 2p states, are carried out on pure and metal-doped bulk Cr2O3 to examine the effect of doping on the electronic and geometric structure. The role of dopants in enhancing the reducibility of Cr2O3 is examined to promote oxygen vacancy formation. The dopants are Mg, Cu, Ni, and Zn, which have a formal +2 oxidation state in their bulk oxides. Given this difference in host and, dopant oxidation states, we show that to predict the correct ground state two metal dopants charge compensated with an oxygen vacancy are required. The second oxygen atom removed is termed "the active" oxygen vacancy and it is the energy required to remove this atom that is related to the reduction process. In all cases, we find that substitutional doping improves the oxygen vacancy formation of bulk Cr2O3 by lowering the energy cost.
Resumo:
Ceria is an important component of catalysts for oxidation reactions that proceed through the Mars-van Krevelen mechanism, promoting activity. A paradigm example of this is the VOx–CeO2 system for oxidative dehydrogenation reactions, where vanadium oxide species are supported on ceria and a special synergy between them is behind the enhanced activity: reduction of the catalyst is promoted by ceria undergoing reduction. This leads to favourable oxygen vacancy formation and hydrogen adsorption energies—useful descriptors for the oxidation activity of VOx–CeO2 catalysts. In this paper, we examine if this promoting effect on ceria-based catalysts holds for other metal oxide modifiers and we investigate MnOn– and CrOn–CeO2(111) (n = 0 − 4) as examples. We show, combining density functional theory calculations and statistical thermodynamics that similarly to the vanadia modifier, the stable species in each case is MnO2– and CrO2–CeO2. Both show favourable energetics for oxygen vacancy formation and hydrogen adsorption, indicating that VO2–CeO2 is not the only system of this type that can have an enhanced activity for oxidation reactions. However, the mechanism involved in each case is different: CrO2–CeO2 shows similar properties to VO2–CeO2 with ceria reduction upon oxygen removal stabilising the 5+ oxidation state of Cr. In contrast, with MnO2–CeO2, Mn is preferentially reduced. Finally, a model system of VO2–Mg:CeO2 is explored that shows a synergy between VO2 modification and Mg doping. These results shed light on the factors involved in active oxidation catalysts based on supported metal oxides on ceria that should be taken into consideration in a rational design of such catalysts.