5 resultados para Merritt, Ruth

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study on the ecology of Irish hedgehogs (Erinaceus europaeus) has provided information on detection techniques, home range, habitat selection, hedgehog prey, nesting, courtship, genetics, road mortality, parasites, ageing and morphology of this species. Data were obtained from a focal study area in rural Cork, in which 24 radio tagged hedgehogs were monitored from June 2008 to June 2010. Further data were obtained through road kill surveys and the collection of hedgehog carcasses from around Ireland. Hedgehogs of both sexes were found to display philopatry. Habitat was not used in proportion to its availability, but certain habitats were selected and a similar pattern of habitat selection was evident in successive years. Hedgehogs preferred arable land in September and October and, unlike studies elsewhere, were observed to forage in the centre of fields. Badgers were regularly seen at the study site and did not appear to negatively affect hedgehogs’ use of the area. Instead the intra- and inter-habitat distribution of hedgehogs was closely correlated with that of their potential prey. Male hedgehogs had a mean annual home range of 56 ha and females 16.5 ha, although monthly home ranges were much more conservative. Male home range peaked during the breeding season (April-July) and a peak in road deaths was observed during these months. The majority of road kill (54%) were individuals of one year old or less, however, individuals were found up to eight and nine years of age. Genetic analysis showed a distinct lack of genetic variation amongst Irish hedgehogs and suggests colonisation by a small number of individuals. The ectoparasites, Archaeopsylla erinacei, Ixodes hexagonus and Ixodes canisuga were recorded in addition to the endoparasites Crenosoma striatum and Capillaria erinacei. In light of the reported decline in many areas of the hedgehogs’ range, it is a species of conservation concern, and this is the first study examining the ecology of the hedgehog in Ireland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lidar is an optical remote sensing instrument that can measure atmospheric parameters. A Raman lidar instrument (UCLID) was established at University College Cork to contribute to the European lidar network, EARLINET. System performance tests were carried out to ensure strict data quality assurance for submission to the EARLINET database. Procedures include: overlap correction, telecover test, Rayleigh test and zero bin test. Raman backscatter coefficients, extinction coefficients and lidar ratio were measured from April 2010 to May 2011 and February 2012 to June 2012. Statistical analysis of the profiles over these periods provided new information about the typical atmospheric scenarios over Southern Ireland in terms of aerosol load in the lower troposphere, the planetary boundary layer (PBL) height, aerosol optical density (AOD) at 532 nm and lidar ratio values. The arithmetic average of the PBL height was found to be 608 ± 138 m with a median of 615 m, while average AOD at 532 nm for clean marine air masses was 0.119 ± 0.023 and for polluted air masses was 0.170 ± 0.036. The lidar ratio showed a seasonal dependence with lower values found in winter and autumn (20 ± 5 sr) and higher during spring and winter (30 ± 12 sr). Detection of volcanic particles from the eruption of the volcano Eyjafjallajökull in Iceland was measured between 21 April and 7 May 2010. The backscatter coefficient of the ash layer varied between 2.5 Mm-1sr-1 and 3.5 Mm-1sr-1, and estimation of the AOD at 532 nm was found to be between 0.090 and 0.215. Several aerosol loads due to Saharan dust particles were detected in Spring 2011 and 2012. Lidar ratio of the dust layers were determine to be between 45 and 77 sr and AOD at 532 nm during the dust events range between 0.84 to 0.494.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecosystem goods and services provided by estuarine and near coastal regions are being increasingly recognised for their immense value, as is the biodiversity in these areas and these near coastal communities have been identified as sentinels of climate change also. Population structure and reproductive biology of two bivalve molluscs, Cerastoderma edule and, Mytilus edulis were assessed at two study sites over a 16-month study period. Following an anomalously harsh winter, advancement of spawning time was observed in both species. Throughout Ireland and Europe the cockle has experienced mass surfacings in geographically distinct regions, and a concurrent study of cockles was undertaken to explore this phenomenon. Surfaced and buried cockles were collected on a monthly basis and their health compared. Age was highlighted as a source of variation between dying and healthy animals with a parasite threshold being reached possibly around age three. Local factors dominated when looking at the cause of surfacing at each site. The health of mussels was explored too on a temporal and seasonal basis in an attempt to assess what constitutes a healthy organism. In essence external drivers can tip the balance between “acceptable” levels of infection where the mussel can still function physiologically and “unacceptable” where prevalence and intensity of infection can result in physiological impairment at the individual and population level. Synecological studies of intertidal ecosystems are lacking, so all bivalves encountered during the sampling were assessed in terms of population structure, reproduction, and health. It became clear, that some parasites might specialize on one host species while others are not so specific in host choice. Furthermore the population genetics of the cockle, its parasite Meiogymnophallus minutus, and its hyperparasite Unikaryon legeri were examined too. A small nucleotide polymorphism was detected upon comparison of Ireland and Morocco.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD thesis investigates the application of hollow core photonic crystal fibre for use as an optical fibre nano litre liquid sensor. The use of hollow core photonic crystal fibre for optical fibre sensing is influenced by the vast wealth of knowledge, and years of research that has been conducted for optical waveguides. Hollow core photonic crystal fibres have the potential for use as a simple, rapid and continuous sensor for a wide range of applications. In this thesis, the velocity of a liquid flowing through the core of the fibre (driven by capillary forces) is used for the determination of the viscosity of a liquid. The structure of the hollow core photonic crystal fibre is harnessed to collect Raman scatter from the sample liquid. These two methods are integrated to investigate the range of applications the hollow core photonic crystal fibre can be utilised for as an optical liquid sensor. Understanding the guidance properties of hollow core photonic crystal fibre is forefront in dynamically monitoring the liquid filling. When liquid is inserted fully or selectively to the capillaries, the propagation properties change from photonic bandgap guidance when empty, to index guidance when the core only is filled and finally to a shifted photonic bandgap effect, when the capillaries are fully filled. The alterations to the guidance are exploited for all viscosity and Raman scattering measurements. The concept of the optical fibre viscosity sensor was tested for a wide range of samples, from aqueous solutions of propan-1-ol to solutions of mono-saccharides in phosphate buffer saline. The samples chosen to test the concept were selected after careful consideration of the importance of the liquid in medical and industrial applications. The Raman scattering of a wide range of biological important fluids, such as creatinine, glucose and lactate were investigated, some for the first time with hollow core photonic crystal fibre.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioluminescence is the production of light by living organisms as a result of a number of enzyme catalysed reactions caused by enzymes termed luciferases. The lux genes responsible for the emission of light can be cloned from one bioluminescent microorganism into one that is not bioluminescent. The light emitted can be monitored and quantified and will provide information on the metabolic activity, quantity and location of cells in a particular environment, in real-time. The primary aim of this thesis was to investigate and identify several food industry related applications of lux-tagged microorganisms. The first aim was to monitor a lux-tagged Cronobacter sakazakii in reconstituted infant milk formula, in realtime. The second aim was to investigate a bioluminescent-based early warning system for starter culture disruption by bacteriophages and antibiotic residues. The third of this thesis was to examine the use of a bioluminescent-based assay to test the activity of bioengineered Nisin derivatives M21V and S29A against foodborne pathogens in laboratory media and selected foods.