2 resultados para Marie-Louis (1...-1877)
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.
Resumo:
The objective of this research was to investigate the synthesis of nitrile oxides and to study their reactivity in 1,3-dipolar cycloadditions with formamidines. Chapter one looks at the literature surrounding the 1,3-dipolar cycloaddition reaction. It explores the generation of 1,3-dipoles (mainly nitrile oxides) and dipolarophiles (predominantly amidines). It discusses the potential synthetic uses of the 1,3-dipolar cycloadducts. It examines both and inter- and intra-molecular cycloaddition reactions. It recognises the use of the 1,3-dipolar cycloadditions as a successful method in building natural products and oxadiazolines. The decomposition of oxadiazolines as a route to nitriles is also outlined in this chapter. Chapter two discusses the results of this research candidate. The preparation of nitrile oxide precursors - hydroximoyl halides - is outlined at first. The generation of nitrile oxides is then demonstrated, followed by the preparation of furoxans. Methods for preparing the reference materials (nitriles and ureas), which result from decomposition of oxadiazolines, then follow. The preparation of series of Δ2-1,2,4- oxadiazolines via the 1,3-dipolar cycloaddition reaction is illustrated in this chapter. The selectivity of the addition of nitrile oxides to dipolarophiles was tested by competition reactions, which are also described in this chapter. NMR techniques were used in the study of the kinetics of the 1,3-dipolar cycloadditions used for the preparation of a series of Δ2-1,2,4-oxadiazolines, which is addressed in this chapter. Chapter three charts the experimental procedures followed to gain results which are discussed in chapter two. It also outlines all analytical data produced during the course of this research.