2 resultados para Marble dust

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lidar is an optical remote sensing instrument that can measure atmospheric parameters. A Raman lidar instrument (UCLID) was established at University College Cork to contribute to the European lidar network, EARLINET. System performance tests were carried out to ensure strict data quality assurance for submission to the EARLINET database. Procedures include: overlap correction, telecover test, Rayleigh test and zero bin test. Raman backscatter coefficients, extinction coefficients and lidar ratio were measured from April 2010 to May 2011 and February 2012 to June 2012. Statistical analysis of the profiles over these periods provided new information about the typical atmospheric scenarios over Southern Ireland in terms of aerosol load in the lower troposphere, the planetary boundary layer (PBL) height, aerosol optical density (AOD) at 532 nm and lidar ratio values. The arithmetic average of the PBL height was found to be 608 ± 138 m with a median of 615 m, while average AOD at 532 nm for clean marine air masses was 0.119 ± 0.023 and for polluted air masses was 0.170 ± 0.036. The lidar ratio showed a seasonal dependence with lower values found in winter and autumn (20 ± 5 sr) and higher during spring and winter (30 ± 12 sr). Detection of volcanic particles from the eruption of the volcano Eyjafjallajökull in Iceland was measured between 21 April and 7 May 2010. The backscatter coefficient of the ash layer varied between 2.5 Mm-1sr-1 and 3.5 Mm-1sr-1, and estimation of the AOD at 532 nm was found to be between 0.090 and 0.215. Several aerosol loads due to Saharan dust particles were detected in Spring 2011 and 2012. Lidar ratio of the dust layers were determine to be between 45 and 77 sr and AOD at 532 nm during the dust events range between 0.84 to 0.494.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to determine the size-resolved chemical composition of single particles in real-time an ATOFMS was deployed at urban background sites in Paris and Barcelona during the MEGAPOLI and SAPUSS monitoring campaigns respectively. The particle types detected during MEGAPOLI included several carbonaceous species, metal-containing types and sea-salt. Elemental carbon particle types were highly abundant, with 86% due to fossil fuel combustion and 14% attributed to biomass burning. Furthermore, 79% of the EC was apportioned to local emissions and 21% to continental transport. The carbonaceous particle types were compared with quantitative measurements from other instruments, and while direct correlations using particle counts were poor, scaling of the ATOFMS counts greatly improved the relationship. During SAPUSS carbonaceous species, sea-salt, dust, vegetative debris and various metal-containing particle types were identified. Throughout the campaign the site was influenced by air masses altering the composition of particles detected. During North African air masses the city was heavily influenced by Saharan dust. A regional stagnation was also observed leading to a large increase in carbonaceous particle counts. While the ATOFMS provides a list of particle types present during the measurement campaigns, the data presented is not directly quantitative. The quantitative response of the ATOFMS to metals was examined by comparing the ion signals within particle mass spectra and to hourly mass concentrations of; Na, K, Ca, Ti, V, Cr, Mn, Fe, Zn and Pb. The ATOFMS was found to have varying correlations with these metals depending on sampling issues such as matrix effects. The strongest correlations were observed for Al, Fe, Zn, Mn and Pb. Overall the results of this work highlight the excellent ability of the ATOFMS in providing composition and mixing state information on atmospheric particles at high time resolution. However they also show its limitations in delivering quantitative information directly.