4 resultados para Magneto.

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, a magneto-optical trap setup is used to laser cool and confine a cloud of 85Rb. The cloud typically contains 108 atoms in a 1 mm3 volume at a temperature in the region of the Doppler Limit (146 _K for 85Rb). To study the cold cloud, a subwavelength optical fibre - a nanofibre, or ONF - is positioned inside the cloud. The ONF can be used in two ways. Firstly, it is an efficient fluorescence collection tool for the cold atoms. Loading times, lifetimes and temperatures can be measured by coupling the atomic fluorescence to the evanescent region of the ONF. Secondly, the ONF is used as a probe beam delivery tool using the evanescent field properties of the device, allowing one to perform spectroscopy on few numbers of near-surface atoms. With improvements in optical density of the cloud, this system is an ideal candidate in which to generate electromagnetically induced transparency and slow light. A theoretical study of the van der Waals and Casimir-Polder interactions between an atom and a dielectric surface is also presented in this work in order to understand their effects in the spectroscopy of near-surface atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Practical realisation of quantum information science is a challenge being addressed by researchers employing various technologies. One of them is based on quantum dots (QD), usually referred to as artificial atoms. Being capable to emit single and polarization entangled photons, they are attractive as sources of quantum bits (qubits) which can be relatively easily integrated into photonic circuits using conventional semiconductor technologies. However, the dominant self-assembled QD systems suffer from asymmetry related problems which modify the energetic structure. The main issue is the degeneracy lifting (the fine-structure splitting, FSS) of an optically allowed neutral exciton state which participates in a polarization-entanglement realisation scheme. The FSS complicates polarization-entanglement detection unless a particular FSS manipulation technique is utilized to reduce it to vanishing values, or a careful selection of intrinsically good candidates from the vast number of QDs is carried out, preventing the possibility of constructing vast arrays of emitters on the same sample. In this work, site-controlled InGaAs QDs grown on (111)B oriented GaAs substrates prepatterned with 7.5 μm pitch tetrahedrons were studied in order to overcome QD asymmetry related problems. By exploiting an intrinsically high rotational symmetry, pyramidal QDs were shown as polarization-entangled photon sources emitting photons with the fidelity of the expected maximally entangled state as high as 0.721. It is the first site-controlled QD system of entangled photon emitters. Moreover, the density of such emitters was found to be as high as 15% in some areas: the density much higher than in any other QD system. The associated physical phenomena (e.g., carrier dynamic, QD energetic structure) were studied, as well, by different techniques: photon correlation spectroscopy, polarization-resolved microphotoluminescence and magneto-photoluminescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical nanofibres (ONFs) are very thin optical waveguides with sub-wavelength diameters. ONFs have very high evanescent fields and the guided light is confined strongly in the transverse direction. These fibres can be used to achieve strong light-matter interactions. Atoms around the waist of an ONF can be probed by collecting the atomic fluorescence coupling or by measuring the transmission (or the polarisation) of the probe beam sent through it. This thesis presents experiments using ONFs for probing and manipulating laser-cooled 87Rb atoms. As an initial experiment, a single mode ONF was integrated into a magneto-optical trap (MOT) and used for measuring the characteristics of the MOT, such as the loading time and the average temperature of the atom cloud. The effect of a near-resonant probe beam on the local temperature of the cold atoms has been studied. Next, the ONF was used for manipulating the atoms in the evanescent fields region in order to generate nonlinear optical effects. Four-wave mixing, ac Stark effect (Autler-Townes splitting) and electromagnetically induced transparency have been observed at unprecedented ultralow power levels. In another experiment, a few-mode ONF, supporting only the fundamental mode and the first higher order mode group, has been used for studying cold atoms. A higher pumping rate of the atomic fluorescence into the higher order fibreguided modes and more interactions with the surrounding atoms for higher order mode evanescent light, when compared to signals for the fundamental mode, have been identified. The results obtained in the thesis are particularly for a fundamental understanding of light-atom interactions when atoms are near a dielectric surface and also for the development of fibre-based quantum information technologies. Atoms coupled to ONFs could be used for preparing intrinsically fibre-coupled quantum nodes for quantum computing and the studies presented here are significant for a detailed understanding of such a system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical nanofibres are ultrathin optical fibres with a waist diameter typically less than the wavelength of light being guided through them. Cold atoms can couple to the evanescent field of the nanofibre-guided modes and such systems are emerging as promising technologies for the development of atom-photon hybrid quantum devices. Atoms within the evanescent field region of an optical nanofibre can be probed by sending near or on-resonant light through the fibre; however, the probe light can detrimentally affect the properties of the atoms. In this paper, we report on the modification of the local temperature of laser-cooled 87Rb atoms in a magneto-optical trap centred around an optical nanofibre when near-resonant probe light propagates through it. A transient absorption technique has been used to measure the temperature of the affected atoms and temperature variations from 160 μk to 850 μk, for a probe power ranging from 0 to 50 nW, have been observed. This effect could have implications in relation to using optical nanofibres for probing and manipulating cold or ultracold atoms.