2 resultados para MU(1)-OPIOID RECEPTORS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Initial studies have demonstrated that intra- renal infusion of Ang (1-7) caused a diuresis and natriuresis that was proportional to the degree of activation of the Renin Angiotensin Aldosterone System (RAAS). This raised the question as why the magnitude of this diuresis and natriuresis was compromised in rats receiving a high sodium diet (suppressed RAAS) and enhanced in low sodium fed rats (activated RAAS)? Could the answer lie with changes in intra-renal AT1 or Mas receptor expression? Interestingly, the observed Ang (1-7) induced increases in sodium and water excretion in rats receiving either a low or normal sodium diet were and blocked in the presence of the AT 1 receptor antagonist (Losartan) in the presence of the, 'Mas' receptor antagonist (A-779). These data suggest that both AT1 and 'Mas' receptors need to be functional in order to fully mediate the renal responses to intra-renal Ang (1-7) infusion. Importantly, further experimentation also revealed that there is a proportional relationship between AT 1 receptor expression in the rat renal cortex and the magnitude of the excretory actions of intra renal Ang (1-7) infusion, which is only partially dependent on the level of 'Mas' receptor expression. These observations suggest that although Ang (1-7) induced increases in sodium and water excretion are mediated by the Mas receptor, the magnitude of these excretory responses appear to be dependent upon the level of AT 1 receptor expression and more specifically Ang II/ AT 1 receptor signalling. Thus in rats receiving a low sodium diet, Ang (1-7) acts via the Mas receptor to inhibit Ang II/ AT 1 receptor signalling. In rats receiving a high sodium diet the down regulated AT 1 receptor expression implies a reduction in Ang II/ AT 1 receptor signalling which renders the counter-regulatory effects of intra-renal Ang (1-7) infusion redundant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the mechanisms by which HRG-1 contributes to the invasive and cytoprotective signalling pathways in cancer cells through its effects on VATPase activity and heme transport. Plasma membrane-localised V-ATPase activity correlates with enhanced metastatic potential in cancer cells, which is attributed to extrusion of protons into the extracellular space and activation of pH-sensitive, extracellular matrix degrading-proteases. We found that HRG-1 is co-expressed with the V-ATPase at the plasma membrane of certain aggressive cancer cell types. Modulation of HRG-1 expression altered both the localisation and activity of the VATPase. We also found that HRG-1 enhances trafficking of essential transporters such as the glucose transporter (GLUT-1) in cancer cells, and increases glucose uptake, which is required for cancer cell growth, metabolism and V-ATPase assembly. Heme is potentially cytotoxic, owing to its iron moiety, and therefore the trafficking of heme is tightly controlled in cells. We hypothesised that HRG-1 is required for the transport of heme to intracellular compartments. Importantly, we found that HRG-1 interacts with the heme oxygenases that are necessary for heme catabolism. HRG-1 is also required for trafficking of both heme-bound and nonheme-bound receptors and suppression of HRG-1 results in perturbed receptor trafficking to the lysosome. Suppression of HRG-1 in HeLa cells increases toxic heme accumulation, reactive oxygen species accumulation, and DNA damage resulting in caspasedependent cell death. Mutation of essential heme binding residues in HRG-1 results in decreased heme binding to HRG-1. Interestingly, cells expressing heme-binding HRG-1 mutants exhibit decreased internalisation of the transferrin receptor compared to cells expressing wildtype HRG-1. These findings suggest that HRG- 1/heme trafficking contributes to a hitherto unappreciated aspect of receptormediated endocytosis. Overall, the findings of this thesis show that HRG-1-mediated regulation of intracellular and extracellular pH through V-ATPase activity is essential for a functioning endocytic pathway. This is critical for cells to acquire nutrients such as folate, iron and glucose and to mediate signalling in response to growth factor activation. Thus, HRG-1 facilitates enhanced metabolic activity of cancer cells to enable tumour growth and metastasis.