3 resultados para MOLECULAR ENVIRONMENTS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of the Gram-positive foodborne pathogen Listeria monocytogenes to survive and grow in environments of elevated osmolarity can be attributed, at least in part, to the accumulation of a restricted range of low molecular mass solutes compatible with cellular function. Accumulated to high internal concentrations in hyper-saline environments, compatible solutes, either transported into the cell or synthesized de novo, play a dual role: helping to stabilize protein structure and function while also counterbalancing external osmotic strength, thus preventing water loss from the cell and plasmolysis. While previous physiological investigations identified glycine betaine, carnitine, and proline as the principal compatible solutes in the listerial osmostress response, genetic alanysis of the uptake/synthesis systems governing the accumulation of these compounds has, until now, remained largely unexplored. Representing the first genetic analysis of compatible solute accumulation in L. monocytogenes, this thesis describes the molecular characterization of BetL; a highly specific secondary glycine betaine transport system, OpuC; a multicomponent carnitine/glycine betaine transporter, and finally proBA; a two-gene operon encoding the first two enzymes of the listerial proline piosynthesis pathway. In addition to their role in osmotolerance, the potential of each system in contributing to listerial pathogenesis was investigated. While mutations in each gene cluster exhibited dramatic reductions in listerial osmotolerance, OpuC- mutants were additionally shown to exhibit reduced virulence when admisistered via the oral route. This represents the first direct link between the salt stress response and virulence in L. monocytogenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Escherichia coli (E.coli) is a diverse bacterial species that primarily forms a beneficial symbiotic relationship with the host in the human lower gastrointestinal track (GIT), however it can also be pathogenic in this environment. Furthermore, some strains can diverge from the GIT and occupy niches such as the urinary tract. In all these environments, E. coli interacts with the immune system and macrophages represent the front line of the innate immune system. In this study we characterise the immune response by macrophages to E. coli infection. It was shown that E. coli broadly provoke a similar cytokine response during macrophages infection and furthermore are degraded primarily by the phagocytosis pathway. Recently a new group of E. coli called Adherent Invasive Escherichia coli (AIEC) has been described. AIEC are present in the guts of Crohn’s disease (CD) patients at a higher frequency than in healthy patients. AIEC can replicate in macrophages but the mechanism for this is not fully understood. The processing of AIEC by macrophages was investigated and it was shown that AIEC only replicated in permissive macrophages. Furthermore, even in a permissive macrophages AIEC are trafficked through macrophages in a similar manner to commensal E. coli. This supports the hypothesis that AIEC are highly similar to commensal E. coli and only cause pathogenicity when present in the permissive environment of the gut of CD patients. Replication in macrophages requires functioning metabolic pathways and it was identified that glycolysis is important for AIEC survival in macrophages. AIEC mutants without a fully functioning glycolysis pathway induced less IL-1β cytokine release from macrophages than wild type strain suggesting that metabolism plays a role in inflammasome activation. Furthermore, AIEC mutants that could not produce the glycolytic end product acetate induced significantly reduced IL-1β release during infection. This suggest that the acetate molecule or a phenotypic effect of its production may be a driver of IL-1β release from AIEC infected macrophages. The interaction of uropathogenic E. coli (UPEC) with macrophages was also investigated. UPEC induced very high levels of cytotoxicity in human macrophages which was shown to be dependent on the production of the pore forming toxin α-hemolysin. However, UPEC did not induced high levels of cytotoxicity in murine macrophages suggesting there are species specific sensitivity to α-hemolysin that should be considered when studying UPEC pathogenicity in murine models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic–biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.