1 resultado para MIXED MODELS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Seizures are harmful to the neonatal brain; this compels many clinicians and researchers to persevere further in optimizing every aspects of managing neonatal seizures. Aims To delineate the seizure profile between non-cooled versus cooled neonates with hypoxic-ischaemic encephalopathy (HIE), in neonates with stroke, the response of seizure burden to phenobarbitone and to quantify the degree of electroclinical dissociation (ECD) of seizures. Methods The multichannel video-EEG was used in this research study as the gold standard to detect seizures, allowing accurate quantification of seizure burden to be ascertained in term neonates. The entire EEG recording for each neonate was independently reviewed by at least 1 experienced neurophysiologist. Data were expressed in medians and interquartile ranges. Linear mixed models results were presented as mean (95% confidence interval); p values <0.05 were deemed as significant. Results Seizure burden in cooled neonates was lower than in non-cooled neonates [60(39-224) vs 203(141-406) minutes; p=0.027]. Seizure burden was reduced in cooled neonates with moderate HIE [49(26-89) vs 162(97-262) minutes; p=0.020] when compared with severe HIE. In neonates with stroke, the background pattern showed suppression over the infarcted side and seizures demonstrated a characteristic pattern. Compared with 10 mg/kg, phenobarbitone doses at 20 mg/kg reduced seizure burden (p=0.004). Seizure burden was reduced within 1 hour of phenobarbitone administration [mean (95% confidence interval): -14(-20 to -8) minutes/hour; p<0.001], but seizures returned to pre-treatment levels within 4 hours (p=0.064). The ECD index in cooled, non-cooled neonates with HIE, stroke and in neonates with other diagnoses were 88%, 94%, 64% and 75% respectively. Conclusions Further research exploring the treatment effects on seizure burden in the neonatal brain is required. A change to our current treatment strategy is warranted as we continue to strive for more effective seizure control, anchored with use of the multichannel EEG as the surveillance tool.