3 resultados para Localization and tracking
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
In this thesis, extensive experiments are firstly conducted to characterize the performance of using the emerging IEEE 802.15.4-2011 ultra wideband (UWB) for indoor localization, and the results demonstrate the accuracy and precision of using time of arrival measurements for ranging applications. A multipath propagation controlling technique is synthesized which considers the relationship between transmit power, transmission range and signal-to-noise ratio. The methodology includes a novel bilateral transmitter output power control algorithm which is demonstrated to be able to stabilize the multipath channel, and enable sub 5cm instant ranging accuracy in line of sight conditions. A fully-coupled architecture is proposed for the localization system using a combination of IEEE 802.15.4-2011 UWB and inertial sensors. This architecture not only implements the position estimation of the object by fusing the UWB and inertial measurements, but enables the nodes in the localization network to mutually share positional and other useful information via the UWB channel. The hybrid system has been demonstrated to be capable of simultaneous local-positioning and remote-tracking of the mobile object. Three fusion algorithms for relative position estimation are proposed, including internal navigation system (INS), INS with UWB ranging correction, and orientation plus ranging. Experimental results show that the INS with UWB correction algorithm achieves an average position accuracy of 0.1883m, and gets 83% and 62% improvements on the accuracy of the INS (1.0994m) and the existing extended Kalman filter tracking algorithm (0.5m), respectively.
Resumo:
This thesis explores the use of electromagnetics for both steering and tracking of medical instruments in minimally invasive surgeries. The end application is virtual navigation of the lung for biopsy of early stage cancer nodules. Navigation to the peripheral regions of the lung is difficult due to physical dimensions of the bronchi and current methods have low successes rates for accurate diagnosis. Firstly, the potential use of DC magnetic fields for the actuation of catheter devices with permanently magnetised distal attachments is investigated. Catheter models formed from various materials and magnetic tip formations are used to examine the usefulness of relatively low power and compact electromagnets. The force and torque that can be exerted on a small permanent magnet is shown to be extremely limited. Hence, after this initial investigation we turn our attention to electromagnetic tracking, in the development of a novel, low-cost implementation of a GPS-like system for navigating within a patient. A planar magnetic transmitter, formed on a printed circuit board for a low-profile and low cost manufacture, is used to generate a low frequency magnetic field distribution which is detected by a small induction coil sensor. The field transmitter is controlled by a novel closed-loop system that ensures a highly stable magnetic field with reduced interference from one transmitter coil to another. Efficient demodulation schemes are presented which utilise synchronous detection of each magnetic field component experienced by the sensor. The overall tracking accuracy of the system is shown to be less than 2 mm with an orientation error less than 1°. A novel demodulation implementation using a unique undersampling approach allows the use of reduced sample rates to sample the signals of interest without loss of tracking accuracy. This is advantageous for embedded microcontroller implementations of EM tracking systems. The EM tracking system is demonstrated in the pre-clinical environment of a breathing lung phantom. The airways of the phantom are successfully navigated using the system in combination with a 3D computer model rendered from CT data. Registration is achieved using both a landmark rigid registration method and a hybrid fiducial-free approach. The design of a planar magnetic shield structure for blocking the effects of metallic distortion from below the transmitter is presented which successfully blocks the impact of large ferromagnetic objects such as operating tables. A variety of shielding material are analysed with MuMetal and ferrite both providing excellent shieling performance and an increased signal to noise ratio. Finally, the effect of conductive materials and human tissue on magnetic field measurements is presented. Error due to induced eddy currents and capacitive coupling is shown to severely affect EM tracking accuracy at higher frequencies.
Resumo:
Energy efficiency and user comfort have recently become priorities in the Facility Management (FM) sector. This has resulted in the use of innovative building components, such as thermal solar panels, heat pumps, etc., as they have potential to provide better performance, energy savings and increased user comfort. However, as the complexity of components increases, the requirement for maintenance management also increases. The standard routine for building maintenance is inspection which results in repairs or replacement when a fault is found. This routine leads to unnecessary inspections which have a cost with respect to downtime of a component and work hours. This research proposes an alternative routine: performing building maintenance at the point in time when the component is degrading and requires maintenance, thus reducing the frequency of unnecessary inspections. This thesis demonstrates that statistical techniques can be used as part of a maintenance management methodology to invoke maintenance before failure occurs. The proposed FM process is presented through a scenario utilising current Building Information Modelling (BIM) technology and innovative contractual and organisational models. This FM scenario supports a Degradation based Maintenance (DbM) scheduling methodology, implemented using two statistical techniques, Particle Filters (PFs) and Gaussian Processes (GPs). DbM consists of extracting and tracking a degradation metric for a component. Limits for the degradation metric are identified based on one of a number of proposed processes. These processes determine the limits based on the maturity of the historical information available. DbM is implemented for three case study components: a heat exchanger; a heat pump; and a set of bearings. The identified degradation points for each case study, from a PF, a GP and a hybrid (PF and GP combined) DbM implementation are assessed against known degradation points. The GP implementations are successful for all components. For the PF implementations, the results presented in this thesis find that the extracted metrics and limits identify degradation occurrences accurately for components which are in continuous operation. For components which have seasonal operational periods, the PF may wrongly identify degradation. The GP performs more robustly than the PF, but the PF, on average, results in fewer false positives. The hybrid implementations, which are a combination of GP and PF results, are successful for 2 of 3 case studies and are not affected by seasonal data. Overall, DbM is effectively applied for the three case study components. The accuracy of the implementations is dependant on the relationships modelled by the PF and GP, and on the type and quantity of data available. This novel maintenance process can improve equipment performance and reduce energy wastage from BSCs operation.