2 resultados para Litter decomposition
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Coastal lagoons are defined as shallow coastal water bodies partially separated from the adjacent sea by a restrictive barrier. Coastal lagoons are protected under Annex I of the European Habitats Directive (92/43/EEC). Lagoons are also considered to be “transitional water bodies” and are therefore included in the “register of protected areas” under the Water Framework Directive (2000/60/EC). Consequently, EU member states are required to establish monitoring plans and to regularly report on lagoon condition and conservation status. Irish lagoons are considered relatively rare and unusual because of their North Atlantic, macrotidal location on high energy coastlines and have received little attention. This work aimed to assess the physicochemical and ecological status of three lagoons, Cuskinny, Farranamanagh and Toormore, on the southwest coast of Ireland. Baseline salinity, nutrient and biological conditions were determined in order to provide reference conditions to detect perturbations, and to inform future maintenance of ecosystem health. Accumulation of organic matter is an increasing pressure in coastal lagoon habitats worldwide, often compounding existing eutrophication problems. This research also aimed to investigate the in situ decomposition process in a lagoon habitat together with exploring the associated invertebrate assemblages. Re-classification of the lagoons, under the guidelines of the Venice system for the classifications of marine waters according to salinity, was completed by taking spatial and temporal changes in salinity regimes into consideration. Based on the results of this study, Cuskinny, Farranamanagh and Toormore lagoons are now classified as mesohaline (5 ppt – 18 ppt), oligohaline (0.5 ppt – 5 ppt) and polyhaline (18 ppt – 30 ppt), respectively. Varying vertical, longitudinal and transverse salinity patterns were observed in the three lagoons. Strong correlations between salinity and cumulative rainfall highlighted the important role of precipitation in controlling the lagoon environment. Maximum effect of precipitation on the salinity of the lagoon was observed between four and fourteen days later depending on catchment area geology, indicating the uniqueness of each lagoon system. Seasonal nutrient patterns were evident in the lagoons. Nutrient concentrations were found to be reflective of the catchment area and the magnitude of the freshwater inflow. Assessment based on the Redfield molar ratio indicated a trend towards phosphorus, rather than nitrogen, limitation in Irish lagoons. Investigation of the decomposition process in Cuskinny Lagoon revealed that greatest biomass loss occurred in the winter season. Lowest biomass loss occurred in spring, possibly due to the high density of invertebrates feeding on the thick microbial layer rather than the decomposing litter. It has been reported that the decomposition of plant biomass is highest in the preferential distribution area of the plant species; however, no similar trend was observed in this study with the most active zones of decomposition varying spatially throughout the seasons. Macroinvertebrate analysis revealed low species diversity but high abundance, indicating the dominance of a small number of species. Invertebrate assemblages within the lagoon varied significantly from communities in the adjacent freshwater or marine environments. Although carried out in coastal lagoons on the southwest coast of Ireland, it is envisaged that the overall findings of this study have relevance throughout the entire island of Ireland and possibly to many North Atlantic coastal lagoon ecosystems elsewhere.
Resumo:
The electroencephalogram (EEG) is an important noninvasive tool used in the neonatal intensive care unit (NICU) for the neurologic evaluation of the sick newborn infant. It provides an excellent assessment of at-risk newborns and formulates a prognosis for long-term neurologic outcome.The automated analysis of neonatal EEG data in the NICU can provide valuable information to the clinician facilitating medical intervention. The aim of this thesis is to develop a system for automatic classification of neonatal EEG which can be mainly divided into two parts: (1) classification of neonatal EEG seizure from nonseizure, and (2) classifying neonatal background EEG into several grades based on the severity of the injury using atomic decomposition. Atomic decomposition techniques use redundant time-frequency dictionaries for sparse signal representations or approximations. The first novel contribution of this thesis is the development of a novel time-frequency dictionary coherent with the neonatal EEG seizure states. This dictionary was able to track the time-varying nature of the EEG signal. It was shown that by using atomic decomposition and the proposed novel dictionary, the neonatal EEG transition from nonseizure to seizure states could be detected efficiently. The second novel contribution of this thesis is the development of a neonatal seizure detection algorithm using several time-frequency features from the proposed novel dictionary. It was shown that the time-frequency features obtained from the atoms in the novel dictionary improved the seizure detection accuracy when compared to that obtained from the raw EEG signal. With the assistance of a supervised multiclass SVM classifier and several timefrequency features, several methods to automatically grade EEG were explored. In summary, the novel techniques proposed in this thesis contribute to the application of advanced signal processing techniques for automatic assessment of neonatal EEG recordings.