11 resultados para Linearisation techniques
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
A massive change is currently taking place in the manner in which power networks are operated. Traditionally, power networks consisted of large power stations which were controlled from centralised locations. The trend in modern power networks is for generated power to be produced by a diverse array of energy sources which are spread over a large geographical area. As a result, controlling these systems from a centralised controller is impractical. Thus, future power networks will be controlled by a large number of intelligent distributed controllers which must work together to coordinate their actions. The term Smart Grid is the umbrella term used to denote this combination of power systems, artificial intelligence, and communications engineering. This thesis focuses on the application of optimal control techniques to Smart Grids with a focus in particular on iterative distributed MPC. A novel convergence and stability proof for iterative distributed MPC based on the Alternating Direction Method of Multipliers is derived. Distributed and centralised MPC, and an optimised PID controllers' performance are then compared when applied to a highly interconnected, nonlinear, MIMO testbed based on a part of the Nordic power grid. Finally, a novel tuning algorithm is proposed for iterative distributed MPC which simultaneously optimises both the closed loop performance and the communication overhead associated with the desired control.
Resumo:
There is much common ground between the areas of coding theory and systems theory. Fitzpatrick has shown that a Göbner basis approach leads to efficient algorithms in the decoding of Reed-Solomon codes and in scalar interpolation and partial realization. This thesis simultaneously generalizes and simplifies that approach and presents applications to discrete-time modeling, multivariable interpolation and list decoding. Gröbner basis theory has come into its own in the context of software and algorithm development. By generalizing the concept of polynomial degree, term orders are provided for multivariable polynomial rings and free modules over polynomial rings. The orders are not, in general, unique and this adds, in no small way, to the power and flexibility of the technique. As well as being generating sets for ideals or modules, Gröbner bases always contain a element which is minimal with respect tot the corresponding term order. Central to this thesis is a general algorithm, valid for any term order, that produces a Gröbner basis for the solution module (or ideal) of elements satisfying a sequence of generalized congruences. These congruences, based on shifts and homomorphisms, are applicable to a wide variety of problems, including key equations and interpolations. At the core of the algorithm is an incremental step. Iterating this step lends a recursive/iterative character to the algorithm. As a consequence, not all of the input to the algorithm need be available from the start and different "paths" can be taken to reach the final solution. The existence of a suitable chain of modules satisfying the criteria of the incremental step is a prerequisite for applying the algorithm.
Resumo:
Error correcting codes are combinatorial objects, designed to enable reliable transmission of digital data over noisy channels. They are ubiquitously used in communication, data storage etc. Error correction allows reconstruction of the original data from received word. The classical decoding algorithms are constrained to output just one codeword. However, in the late 50’s researchers proposed a relaxed error correction model for potentially large error rates known as list decoding. The research presented in this thesis focuses on reducing the computational effort and enhancing the efficiency of decoding algorithms for several codes from algorithmic as well as architectural standpoint. The codes in consideration are linear block codes closely related to Reed Solomon (RS) codes. A high speed low complexity algorithm and architecture are presented for encoding and decoding RS codes based on evaluation. The implementation results show that the hardware resources and the total execution time are significantly reduced as compared to the classical decoder. The evaluation based encoding and decoding schemes are modified and extended for shortened RS codes and software implementation shows substantial reduction in memory footprint at the expense of latency. Hermitian codes can be seen as concatenated RS codes and are much longer than RS codes over the same aphabet. A fast, novel and efficient VLSI architecture for Hermitian codes is proposed based on interpolation decoding. The proposed architecture is proven to have better than Kötter’s decoder for high rate codes. The thesis work also explores a method of constructing optimal codes by computing the subfield subcodes of Generalized Toric (GT) codes that is a natural extension of RS codes over several dimensions. The polynomial generators or evaluation polynomials for subfield-subcodes of GT codes are identified based on which dimension and bound for the minimum distance are computed. The algebraic structure for the polynomials evaluating to subfield is used to simplify the list decoding algorithm for BCH codes. Finally, an efficient and novel approach is proposed for exploiting powerful codes having complex decoding but simple encoding scheme (comparable to RS codes) for multihop wireless sensor network (WSN) applications.
Resumo:
Modern neuroscience relies heavily on sophisticated tools that allow us to visualize and manipulate cells with precise spatial and temporal control. Transgenic mouse models, for example, can be used to manipulate cellular activity in order to draw conclusions about the molecular events responsible for the development, maintenance and refinement of healthy and/or diseased neuronal circuits. Although it is fairly well established that circuits respond to activity-dependent competition between neurons, we have yet to understand either the mechanisms underlying these events or the higher-order plasticity that synchronizes entire circuits. In this thesis we aimed to develop and characterize transgenic mouse models that can be used to directly address these outstanding biological questions in different ways. We present SLICK-H, a Cre-expressing mouse line that can achieve drug-inducible, widespread, neuron-specific manipulations in vivo. This model is a clear improvement over existing models because of its particularly strong, widespread, and even distribution pattern that can be tightly controlled in the absence of drug induction. We also present SLICK-V::Ptox, a mouse line that, through expression of the tetanus toxin light chain, allows long-term inhibition of neurotransmission in a small subset (<1%) of fluorescently labeled pyramidal cells. This model, which can be used to study how a silenced cell performs in a wildtype environment, greatly facilitates the in vivo study of activity-dependent competition in the mammalian brain. As an initial application we used this model to show that tetanus toxin-expressing CA1 neurons experience a 15% - 19% decrease in apical dendritic spine density. Finally, we also describe the attempt to create additional Cre-driven mouse lines that would allow conditional alteration of neuronal activity either by hyperpolarization or inhibition of neurotransmission. Overall, the models characterized in this thesis expand upon the wealth of tools available that aim to dissect neuronal circuitry by genetically manipulating neurons in vivo.
Resumo:
In this thesis I theoretically study quantum states of ultracold atoms. The majority of the Chapters focus on engineering specific quantum states of single atoms with high fidelity in experimentally realistic systems. In the sixth Chapter, I investigate the stability and dynamics of new multidimensional solitonic states that can be created in inhomogeneous atomic Bose-Einstein condensates. In Chapter three I present two papers in which I demonstrate how the coherent tunnelling by adiabatic passage (CTAP) process can be implemented in an experimentally realistic atom chip system, to coherently transfer the centre-of-mass of a single atom between two spatially distinct magnetic waveguides. In these works I also utilise GPU (Graphics Processing Unit) computing which offers a significant performance increase in the numerical simulation of the Schrödinger equation. In Chapter four I investigate the CTAP process for a linear arrangement of radio frequency traps where the centre-of-mass of both, single atoms and clouds of interacting atoms, can be coherently controlled. In Chapter five I present a theoretical study of adiabatic radio frequency potentials where I use Floquet theory to more accurately model situations where frequencies are close and/or field amplitudes are large. I also show how one can create highly versatile 2D adiabatic radio frequency potentials using multiple radio frequency fields with arbitrary field orientation and demonstrate their utility by simulating the creation of ring vortex solitons. In the sixth Chapter I discuss the stability and dynamics of a family of multidimensional solitonic states created in harmonically confined Bose-Einstein condensates. I demonstrate that these solitonic states have interesting dynamical instabilities, where a continuous collapse and revival of the initial state occurs. Through Bogoliubov analysis, I determine the modes responsible for the observed instabilities of each solitonic state and also extract information related to the time at which instability can be observed.
Resumo:
Existing work in Computer Science and Electronic Engineering demonstrates that Digital Signal Processing techniques can effectively identify the presence of stress in the speech signal. These techniques use datasets containing real or actual stress samples i.e. real-life stress such as 911 calls and so on. Studies that use simulated or laboratory-induced stress have been less successful and inconsistent. Pervasive, ubiquitous computing is increasingly moving towards voice-activated and voice-controlled systems and devices. Speech recognition and speaker identification algorithms will have to improve and take emotional speech into account. Modelling the influence of stress on speech and voice is of interest to researchers from many different disciplines including security, telecommunications, psychology, speech science, forensics and Human Computer Interaction (HCI). The aim of this work is to assess the impact of moderate stress on the speech signal. In order to do this, a dataset of laboratory-induced stress is required. While attempting to build this dataset it became apparent that reliably inducing measurable stress in a controlled environment, when speech is a requirement, is a challenging task. This work focuses on the use of a variety of stressors to elicit a stress response during tasks that involve speech content. Biosignal analysis (commercial Brain Computer Interfaces, eye tracking and skin resistance) is used to verify and quantify the stress response, if any. This thesis explains the basis of the author’s hypotheses on the elicitation of affectively-toned speech and presents the results of several studies carried out throughout the PhD research period. These results show that the elicitation of stress, particularly the induction of affectively-toned speech, is not a simple matter and that many modulating factors influence the stress response process. A model is proposed to reflect the author’s hypothesis on the emotional response pathways relating to the elicitation of stress with a required speech content. Finally the author provides guidelines and recommendations for future research on speech under stress. Further research paths are identified and a roadmap for future research in this area is defined.
Resumo:
There are difficulties with utilising self- report and physiological measures of assessment amongst forensic populations. This study investigates implicit based measures amongst sexual offenders, nonsexual offenders and low risk samples. Implicit measurement is a term applied to measurement methods that makes it difficult to influence responses through conscious control. The test battery includes the Implicit Association Test (IAT), Rapid Serial Visual Presentation (RSVP), Viewing Time (VT) and the Structured Clinical interview for disorders. The IAT proposes that people will perform better on a task when they depend on well-practiced cognitive associations. The RSVP task requires participants to identify a single target image that is presented amongst a series of rapidly presented visual images. RSVP operates on the premise that if two target images are presented within 500milliseconds of each other, the possibility that the participant will recognize the second target is significantly reduced when the first target is of salience to the individual. This is the attentional blink phenomenon. VT is based on the principle that people will look longer at images that are of salience. Results showed that on the VT task, child sexual offenders took longer to view images of children than low risk groups. Nude over clothed images induced a greater attentional blink amongst low risk and offending samples on the RSVP task. Sexual offenders took longer than low risk groups on word pairing tasks where sexual words were paired with adult words on the IAT. The SCID highlighted differences between the offending and non offending groups on the sub scales for personality disorders. More erotic stimulus items on the VT and RSVP measures is recommended to better differentiate sexual preference between offending and non offending samples. A pictorial IAT is recommended. Findings provide the basis for further development of implicit measures within the assessment of sexual offenders.
Resumo:
Quantitative analysis of penetrative deformation in sedimentary rocks of fold and thrust belts has largely been carried out using clast based strain analysis techniques. These methods analyse the geometric deviations from an original state that populations of clasts, or strain markers, have undergone. The characterisation of these geometric changes, or strain, in the early stages of rock deformation is not entirely straight forward. This is in part due to the paucity of information on the original state of the strain markers, but also the uncertainty of the relative rheological properties of the strain markers and their matrix during deformation, as well as the interaction of two competing fabrics, such as bedding and cleavage. Furthermore one of the single largest setbacks for accurate strain analysis has been associated with the methods themselves, they are traditionally time consuming, labour intensive and results can vary between users. A suite of semi-automated techniques have been tested and found to work very well, but in low strain environments the problems discussed above persist. Additionally these techniques have been compared to Anisotropy of Magnetic Susceptibility (AMS) analyses, which is a particularly sensitive tool for the characterisation of low strain in sedimentary lithologies.
Resumo:
The objective of this thesis is the exploration and characterization of novel Au nanorod-semiconductor nanowire hybrid nanostructures. I provide a comprehensive bottom-up approach in which, starting from the synthesis and theoretical investigation of the optical properties of Au nanorods, I design, nanofabricate and characterize Au nanorods-semiconductor nanowire hybrid nanodevices with novel optoelectronic capabilities compared to the non-hybrid counterpart. In this regards, I first discuss the seed-mediated protocols to synthesize Au nanorods with different sizes and the influence of nanorod geometries and non-homogeneous surrounding medium on the optical properties investigated by theoretical simulation. Novel methodologies for assembling Au nanorods on (i) a Si/SiO2 substrate with highly-ordered architecture and (ii) on semiconductor nanowires with spatial precision are developed and optimized. By exploiting these approaches, I demonstrate that Raman active modes of an individual ZnO nanowire can be detected in non-resonant conditions by exploring the longitudinal plasmonic resonance mediation of chemical-synthesized Au nanorods deposited on the nanowire surface otherwise not observable on bare ZnO nanowire. Finally, nanofabrication and detailed electrical characterization of ZnO nanowire field-effect transistor (FET) and optoelectronic properties of Au nanorods - ZnO nanowire FET tunable near-infrared photodetector are investigated. In particular we demonstrated orders of magnitude enhancement in the photocurrent intensity in the explored range of wavelengths and 40 times faster time response compared to the bare ZnO FET detector. The improved performance, attributed to the plasmonicmediated hot-electron generation and injection mechanism underlying the photoresponse is investigated both experimentally and theoretically. The miniaturized, tunable and integrated capabilities offered by metal nanorodssemicondictor nanowire device architectures presented in this thesis work could have an important impact in many application fields such as opto-electronic sensors, photodetectors and photovoltaic devices and open new avenues for designing of novel nanoscale optoelectronic devices.
Resumo:
Submission on behalf of UCC to the Government Consultation on the White paper on Irish Aid
Resumo:
Real time monitoring of oxygenation and respiration is on the cutting edge of bioanalysis, including studies of cell metabolism, bioenergetics, mitochondrial function and drug toxicity. This thesis presents the development and evaluation of new luminescent probes and techniques for intracellular O2 sensing and imaging. A new oxygen consumption rate (OCR) platform based on the commercial microfluidic perfusion channel μ-slides compatible with extra- and intracellular O2 sensitive probes, different cell lines and measurement conditions was developed. The design of semi-closed channels allowed cell treatments, multiplexing with other assays and two-fold higher sensitivity to compare with microtiter plate. We compared three common OCR platforms: hermetically sealed quartz cuvettes for absolute OCRs, partially sealed with mineral oil 96-WPs for relative OCRs, and open 96-WPs for local cell oxygenation. Both 96-WP platforms were calibrated against absolute OCR platform with MEF cell line, phosphorescent O2 probe MitoXpress-Intra and time-resolved fluorescence reader. Found correlations allow tracing of cell respiration over time in a high throughput format with the possibility of cell stimulation and of changing measurement conditions. A new multimodal intracellular O2 probe, based on the phosphorescent reporter dye PtTFPP, fluorescent FRET donor and two-photon antennae PFO and cationic nanoparticles RL-100 was described. This probe, called MM2, possesses high brightness, photo- and chemical stability, low toxicity, efficient cell staining and high-resolution intracellular O2 imaging with 2D and 3D cell cultures in intensity, ratiometric and lifetime-based modalities with luminescence readers and FLIM microscopes. Extended range of O2 sensitive probes was designed and studied in order to optimize their spectral characteristics and intracellular targeting, using different NPs materials, delivery vectors, ratiometric pairs and IR dyes. The presented improvements provide useful tool for high sensitive monitoring and imaging of intracellular O2 in different measurement formats with wide range of physiological applications.