5 resultados para Linear potential

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The early stages of nanoporous layer formation, under anodic conditions in the absence of light, were investigated for n-type InP with a carrier concentration of ∼3× 1018 cm-3 in 5 mol dm-3 KOH and a mechanism for the process is proposed. At potentials less than ∼0.35 V, spectroscopic ellipsometry and transmission electron microscopy (TEM) showed a thin oxide film on the surface. Atomic force microscopy (AFM) of electrode surfaces showed no pitting below ∼0.35 V but clearly showed etch pit formation in the range 0.4-0.53 V. The density of surface pits increased with time in both linear potential sweep and constant potential reaching a constant value at a time corresponding approximately to the current peak in linear sweep voltammograms and current-time curves at constant potential. TEM clearly showed individual nanoporous domains separated from the surface by a dense ∼40 nm InP layer. It is concluded that each domain develops as a result of directionally preferential pore propagation from an individual surface pit which forms a channel through this near-surface layer. As they grow larger, domains meet, and the merging of multiple domains eventually leads to a continuous nanoporous sub-surface region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The anodic behavior of highly doped (> 1018 cm-3) n-InP in aqueous KOH was investigated. Electrodes anodized in the absence of light in 2- 5 mol dm-3 KOH at a constant potential of 0.5- 0.75 V (SCE), or subjected to linear potential sweeps to potentials in this range, were shown to exhibit the formation of a nanoporous subsurface region. Both linear sweep voltammograms and current-time curves at constant potential showed a characteristic anodic peak, corresponding to formation of the nanoporous region. No porous region was formed during anodization in 1 mol dm-3 KOH. The nanoporous region was examined using transmission electron microscopy and found to have a thickness of some 1- 3 μm depending on the anodization conditions and to be located beneath a thin (typically ∼40 nm), dense, near-surface layer. The pores varied in width from 25 to 75 nm and both the pore width and porous region thickness were found to decrease with increasing KOH concentration. The porosity was approximately 35%. The porous layer structure is shown to form by the localized penetration of surface pits into the InP, and the dense, near-surface layer is consistent with the effect of electron depletion at the surface of the semiconductor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The observation of spontaneous oscillations in current during the anodization of InP in relatively high concentrations of KOH electrolytes is reported. Oscillations were observed under potential sweep and constant potential conditions. Well-defined oscillations are observed during linear potential sweeps of InP in 5 mol dm-3 KOH to potentials above ∼1.7 V (SCE) at scan rates in the range of 50 to 500 mV s-1. The oscillations observed exhibit an asymmetrical current versus potential profile, and the charge per cycle was found to increase linearly with potential. More complex oscillatory behavior was observed under constant potential conditions. Periodic damped oscillations are observed in high concentrations of electrolyte whereas undamped sinusoidal oscillations are observed in relatively lower concentrations. In both cases, the anodization of InP results in porous InP formation, and the current in the oscillatory region corresponds to the cyclical effective area changes due to pitting dissolution of the InP surface with the coincidental growth of a thick porous In2O3 film.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a study on the numerical simulation of the primary wave energy conversion in the oscillating water column (OWC) wave energy converters (WECs). The new proposed numerical approach consists of three major components: potential flow analysis for the conventional hydrodynamic parameters, such as added mass, damping coefficients, restoring force coefficients and wave excitations; the thermodynamic analysis of the air in the air chamber, which is under the assumptions of the given power take-off characteristics and an isentropic process of air flow. In the formulation, the air compressibility and its effects have been included; and a time-domain analysis by combining the linear potential flow and the thermodynamics of the air flow in the chamber, in which the hydrodynamics and thermodynamics/aerodynamics have been coupled together by the force generated by the pressurised and de-pressurised air in the air chamber, which in turn has effects on the motions of the structure and the internal water surface. As an example, the new developed approach has been applied to a fixed OWC device. The comparisons of the measured data and the simulation results show the new method is very capable of predicting the performance of the OWC devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis details the design, development and execution of innovative methodology in the total synthesis of the terpene-derived marine natural product, furospongolide. It also outlines the synthetic routes used to prepare a novel range of furanolipids derivatives and subsequent evaluation of their potential as antitumour agents. The first chapter is a review of the literature describing efforts undertaken towards the synthesis of biologically active furanosesterterpenoid marine natural products. A brief discussion on the sources and biological activity exhibited by furan natural products is also provided. In addition, a concise account of the role of hypoxia in cancer, and the increasing interest in HIF-1 inhibition as a target for chemotherapeutics is examined. The second chapter discusses the concise synthesis of the marine HIF-1 inhibitor furospongolide, which was achieved in five linear steps from (E,E)-farnesyl acetate. The synthetic strategy features a selective oxidation reaction, a Schlosser sp3-sp3 cross-coupling, a Wittig cross-coupling and an elaborate one-pot selective reduction, lactonisation and isomerization reaction to install the butenolide ring. The structure-activity relationship of furospongolide was also investigated. This involved the design and synthesis of a library of structurally modified analogues sharing the same C1-C13 subunit. This was achieved by exploiting the brevity and high level of convergence of our synthetic route together with the readily amenable structure of our target molecule. Exploiting the Schlosser cross-coupling allowed for replacement of furan with other heterocycles in the preparation of various furanolipid and thiophenolipid derivatives. The employment of reductive amination and Wittig chemistry further added to our novel library of structural derivatives. The third chapter discusses the results obtained from the NCI from biological evaluation From a collection of 28 novel compounds evaluated against the NCI-60 cancer cell array, six drug candidates were successfully selected for further biological evaluation on the basis of antitumour activity. COMPARE analysis revealed a strong correlation between some of our design analogues and the blockbuster anticancer agent tamoxifen, further supporting the potential of furanolipids in the treatment of breast cancer. The fourth chapter, details the full experimental procedures, including spectroscopic and analytical data for all the compounds prepared during this research.