2 resultados para Ligation
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Background and Aim: During carcinogenesis, tumours develop multiple mechanisms to evade the immune system and suppress the anti-tumour immune response. Upregulation of Fas Ligand (FasL/CD95L) expression may represent one such mechanism. FasL is a member of the tumour necrosis factor superfamily that triggers apoptotic cell death following ligation to its receptor Fas. Numerous studies have demonstrated upregulated FasL expression in tumor cells, with FasL expression associated with numerous pro-tumorigenic effects. However, little is known about the mechanisms that regulate FasL expression in tumours. The cyclooxgenase (COX) signalling pathway may play an important role in colon carcinogenesis, via the production of prostaglandins, in particular PGE2. PGE2 signals through four different receptor subtypes, EP1 – EP4. Thus, the aim of this study was to investigate the effect of targeting the PGE2-FasL signaling pathway. Results: (i) PGE2 induces FasL expression via the EP1 receptor in colon cancer cells. (ii) Suppression of FasL expression in colon tumour cells in vivo significantly delays and reduces tumour growth. (iii) Blocking EP1 receptor signaling, or suppression of the EP1 receptor in colon tumour cells, reduces tumour growth in vivo. Suppression of tumour growth correlates in part with suppression of FasL expression. (iv) The reduction in tumour growth is associated with an improved anti-tumour immune response. Tumour infiltration by Treg cells and macrophages was reduced, and the cytotoxic activity of CTL generated from splenocytes isolated from these mice increased. Conclusion: 1) Targeting FasL expression by blocking PGE2-EP1 receptor signalling reduces tumour development in vivo. 2) The mechanism is indirect but is associated with an increased anti-tumour immune response. Thus, unraveling the mechanisms regulating FasL expression and the pro-tumorigenic effects of the EP1 receptor may aid in the search for new therapeutic targets against colon cancer.
Resumo:
Background: The role of Fas (CD95) and its ligand, Fas ligand (FasL/CD95L), is poorly understood in the intestine. Whilst Fas is best studies in terms of its function in apoptosis, recent studies suggest that Fas ligation may mediate additional, non-apoptotic functions such as inflammation. Toll like Receptors (TLRs) play an important role in mediating inflammation and homeostasis in the intestine. Recent studies have shown that a level of crosstalk exists between the Fas and TLR signalling pathways but this has not yet been investigated in the intestine. Aim: The aim of this study was to evaluate potential cross-talk between TLRs and Fas/FasL system in intestinal cancer cells. Results: Treatment with TLR4 and TLR5 ligands, but not ligands for TLR2 and TLR9 increased the expression of Fas and FasL in intestinal cancer cells in vitro. Consistent with this, expression of Fas and FasL was reduced in the distal colon tissue from germ-free (GF), TLR4 and TLR5 knock-out (KO) mice but was unchanged in TLR2KO tissue, suggesting that intestinal cancer cells display a degree of specificity in their ability to upregulate Fas and FasL expression in response to TLR ligation. Expression of both Fas and FasL was significantly reduced in TRIF KO tissue, indicating that signalling via TRIF by TLR4 and TLR5 agonists may be responsible for the induction of Fas and FasL expression in intestinal cancer cells. In addition, modulating Fas signalling using agonistic anti-Fas augmented TLR4 and TLR5-mediated tumour necrosis factor alpha (TNFα) and interleukin 8 (IL)-8 production by intestinal cancer cells, suggesting crosstalk occurs between these receptors in these cells. Furthermore, suppression of Fas in intestinal cancer cells reduced the ability of the intestinal pathogens, Salmonella typhimurium and Listeria monocytogenes to induce the expression of IL-8, suggesting that Fas signalling may play a role in intestinal host defence against pathogens. Inflammation is known to be important in colon tumourigenesis and Fas signalling on intestinal cancer cells has been shown to result in the production of inflammatory mediators. Fas-mediated signalling may therefore play a role in colon cancer development. Suppression of tumour-derived Fas by 85% led to a reduction in the tumour volume and changes in tumour infiltrating macrophages and neutrophils. TLR4 signalling has been shown to play a role in colon cancer via the recruitment and activation of alternatively activated immune cells. Given the crosstalk seen between Fas and TLR4 signalling in intestinal cancer cells in vitro, suppressing Fas signalling may enhance the efficacy of TLR4 antagonism in vivo. TLR4 antagonism resulted in smaller tumours with fewer infiltrating neutrophils. Whilst Fas downregulation did not significantly augment the ability of TLR4 antagonism to reduce the final tumour volume, Fas suppression may augment the anti-tumour effects of TLR4 antagonism as neutrophil infiltration was further reduced upon combinatorial treatment. Conclusion: Together, this study demonstrates evidence of a new role for Fas in the intestinal immune response and that manipulating Fas signalling has potential anti-tumour benefit.