7 resultados para Land demand
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty.
Resumo:
A multi-disciplinary study was conducted to compare stands of ancient and secondary origin within a single wood, the Gearagh woodland, County Cork. These sites were compared with adjacent areas of grassland, which provided a reference for the former land-use (pasture) of the secondary woodland. A historical study confirmed that while the core of the Gearagh has been subject to minimal human interference, other sections have been cleared in the past for agricultural purposes. Investigations into soil structure and composition showed that soil properties in these secondary woodland areas were significantly altered by this past woodland clearance and conversion to agriculture, while the soil of the ancient woodland showed little signs of disturbance. The vegetation community also differed between the two woodland areas, partly due to altered environmental conditions. Many of the ancient woodland plant species were unable to form a persistent seed bank, while there was increased representation of species associated with more open-habitat conditions in the seed bank of the secondary woodland. While germination of woodland species was low in all sites, overall, seeds tended to germinate more successfully in the ancient woodland. The ancient woodland also provided a suitable habitat for many soil and ground detritivores, most notably enchytraeids, although earthworms were not abundant. Past agricultural use, however, changed the decomposer community considerably, with increased representation of earthworm species and a decline in the abundance of enchytraeids in the secondary stands. In conclusion, the legacies of historical agricultural activities can continue to significantly affect the structure and composition of present-day woodlands so that they may differ considerably from undisturbed ancient woodland stands, even within the same woodland. A greater understanding of the origin, development and ecological functioning of ancient woodlands should aid in determining future conservation and management requirements.
Resumo:
Countries across the world are being challenged to decarbonise their energy systems in response to diminishing fossil fuel reserves, rising GHG emissions and the dangerous threat of climate change. There has been a renewed interest in energy efficiency, renewable energy and low carbon energy as policy‐makers seek to identify and put in place the most robust sustainable energy system that can address this challenge. This thesis seeks to improve the evidence base underpinning energy policy decisions in Ireland with a particular focus on natural gas, which in 2011 grew to have a 30% share of Ireland’s TPER. Natural gas is used in all sectors of the Irish economy and is seen by many as a transition fuel to a low-carbon energy system; it is also a uniquely excellent source of data for many aspects of energy consumption. A detailed decomposition analysis of natural gas consumption in the residential sector quantifies many of the structural drives of change, with activity (R2 = 0.97) and intensity (R2 = 0.69) being the best explainers of changing gas demand. The 2002 residential building regulations are subject to an ex-post evaluation, which using empirical data finds a 44 ±9.5% shortfall in expected energy savings as well as a 13±1.6% level of non-compliance. A detailed energy demand model of the entire Irish energy system is presented together with scenario analysis of a large number of energy efficiency policies, which show an aggregate reduction in TFC of 8.9% compared to a reference scenario. The role for natural gas as a transition fuel over a long time horizon (2005-2050) is analysed using an energy systems model and a decomposition analysis, which shows the contribution of fuel switching to natural gas to be worth 12 percentage points of an overall 80% reduction in CO2 emissions. Finally, an analysis of the potential for CCS in Ireland finds gas CCS to be more robust than coal CCS for changes in fuel prices, capital costs and emissions reduction and the cost optimal location for a gas CCS plant in Ireland is found to be in Cork with sequestration in the depleted gas field of Kinsale.
Resumo:
The case for energy policy modelling is strong in Ireland, where stringent EU climate targets are projected to be overshot by 2015. Policy targets aiming to deliver greenhouse gas and renewable energy targets have been made, but it is unclear what savings are to be achieved and from which sectors. Concurrently, the growth of personal mobility has caused an astonishing increase in CO2 emissions from private cars in Ireland, a 37% rise between 2000 and 2008, and while there have been improvements in the efficiency of car technology, there was no decrease in the energy intensity of the car fleet in the same period. This thesis increases the capacity for evidenced-based policymaking in Ireland by developing techno-economic transport energy models and using them to analyse historical trends and to project possible future scenarios. A central focus of this thesis is to understand the effect of the car fleet‘s evolving technical characteristics on energy demand. A car stock model is developed to analyse this question from three angles: Firstly, analysis of car registration and activity data between 2000 and 2008 examines the trends which brought about the surge in energy demand. Secondly, the car stock is modelled into the future and is used to populate a baseline “no new policy” scenario, looking at the impact of recent (2008-2011) policy and purchasing developments on projected energy demand and emissions. Thirdly, a range of technology efficiency, fuel switching and behavioural scenarios are developed up to 2025 in order to indicate the emissions abatement and renewable energy penetration potential from alternative policy packages. In particular, an ambitious car fleet electrification target for Ireland is examined. The car stock model‘s functionality is extended by linking it with other models: LEAP-Ireland, a bottom-up energy demand model for all energy sectors in the country; Irish TIMES, a linear optimisation energy system model; and COPERT, a pollution model. The methodology is also adapted to analyse trends in freight energy demand in a similar way. Finally, this thesis addresses the gap in the representation of travel behaviour in linear energy systems models. A novel methodology is developed and case studies for Ireland and California are presented using the TIMES model. Transport Energy
Resumo:
The International Energy Agency has repeatedly identified increased end-use energy efficiency as the quickest, least costly method of green house gas mitigation, most recently in the 2012 World Energy Outlook, and urges all governing bodies to increase efforts to promote energy efficiency policies and technologies. The residential sector is recognised as a major potential source of cost effective energy efficiency gains. Within the EU this relative importance can be seen from a review of the National Energy Efficiency Action Plans (NEEAP) submitted by member states, which in all cases place a large emphasis on the residential sector. This is particularly true for Ireland whose residential sector has historically had higher energy consumption and CO2 emissions than the EU average and whose first NEEAP targeted 44% of the energy savings to be achieved in 2020 from this sector. This thesis develops a bottom-up engineering archetype modelling approach to analyse the Irish residential sector and to estimate the technical energy savings potential of a number of policy measures. First, a model of space and water heating energy demand for new dwellings is built and used to estimate the technical energy savings potential due to the introduction of the 2008 and 2010 changes to part L of the building regulations governing energy efficiency in new dwellings. Next, the author makes use of a valuable new dataset of Building Energy Rating (BER) survey results to first characterise the highly heterogeneous stock of existing dwellings, and then to estimate the technical energy savings potential of an ambitious national retrofit programme targeting up to 1 million residential dwellings. This thesis also presents work carried out by the author as part of a collaboration to produce a bottom-up, multi-sector LEAP model for Ireland. Overall this work highlights the challenges faced in successfully implementing both sets of policy measures. It points to the wide potential range of final savings possible from particular policy measures and the resulting high degree of uncertainty as to whether particular targets will be met and identifies the key factors on which the success of these policies will depend. It makes recommendations on further modelling work and on the improvements necessary in the data available to researchers and policy makers alike in order to develop increasingly sophisticated residential energy demand models and better inform policy.
Resumo:
Due to growing concerns regarding the anthropogenic interference with the climate system, countries across the world are being challenged to develop effective strategies to mitigate climate change by reducing or preventing greenhouse gas (GHG) emissions. The European Union (EU) is committed to contribute to this challenge by setting a number of climate and energy targets for the years 2020, 2030 and 2050 and then agreeing effort sharing amongst Member States. This thesis focus on one Member State, Ireland, which faces specific challenges and is not on track to meet the targets agreed to date. Before this work commenced, there were no projections of energy demand or supply for Ireland beyond 2020. This thesis uses techno-economic energy modelling instruments to address this knowledge gap. It builds and compares robust, comprehensive policy scenarios, providing a means of assessing the implications of different future energy and emissions pathways for the Irish economy, Ireland’s energy mix and the environment. A central focus of this thesis is to explore the dynamics of the energy system moving towards a low carbon economy. This thesis develops an energy systems model (the Irish TIMES model) to assess the implications of a range of energy and climate policy targets and target years. The thesis also compares the results generated from the least cost scenarios with official projections and target pathways and provides useful metrics and indications to identify key drivers and to support both policy makers and stakeholder in identifying cost optimal strategies. The thesis also extends the functionality of energy system modelling by developing and applying new methodologies to provide additional insights with a focus on particular issues that emerge from the scenario analysis carried out. Firstly, the thesis develops a methodology for soft-linking an energy systems model (Irish TIMES) with a power systems model (PLEXOS) to improve the interpretation of the electricity sector results in the energy system model. The soft-linking enables higher temporal resolution and improved characterisation of power plants and power system operation Secondly, the thesis develops a methodology for the integration of agriculture and energy systems modelling to enable coherent economy wide climate mitigation scenario analysis. This provides a very useful starting point for considering the trade-offs between the energy system and agriculture in the context of a low carbon economy and for enabling analysis of land-use competition. Three specific time scale perspectives are examined in this thesis (2020, 2030, 2050), aligning with key policy target time horizons. The results indicate that Ireland’s short term mandatory emissions reduction target will not be achieved without a significant reassessment of renewable energy policy and that the current dominant policy focus on wind-generated electricity is misplaced. In the medium to long term, the results suggest that energy efficiency is the first cost effective measure to deliver emissions reduction; biomass and biofuels are likely to be the most significant fuel source for Ireland in the context of a low carbon future prompting the need for a detailed assessment of possible implications for sustainability and competition with the agri-food sectors; significant changes are required in infrastructure to deliver deep emissions reductions (to enable the electrification of heat and transport, to accommodate carbon capture and storage facilities (CCS) and for biofuels); competition between energy and agriculture for land-use will become a key issue. The purpose of this thesis is to increase the evidence-based underpinning energy and climate policy decisions in Ireland. The methodology is replicable in other Member States.
Resumo:
This article explores contemporary ‘hidden land’ narrative constructs of Máyel Lyáng and Beyul Dremojong in Sikkim, India, as conceived by the Lepcha and the Lhopo, two ‘scheduled tribes’. Lepcha and Lhopo narratives about these hidden lands in Mount Khangchendzonga inform us about their contemporary and historical, indigenous and Buddhist contexts and the interactions between these contexts. Lhopo perspectives on the hidden Beyul Dremojong echo classical Tibetan Buddhist ‘revealed treasure’ guidebooks and exist within the complex and reciprocal relationship between the Lhopo and the land they inhabit; development initiatives are understood to have caused illness and death in the Lhopo community of Tashiding, often referred to as the geographical ‘center’ of Beyul Dremojong. Contemporary Lepcha comprehensions of Máyel Lyáng, described in oral narratives within an ethnic community whose cosmology is intimately connected with Mount Khangchendzonga, today show some influence of Lhopo interpretations of Beyul Dremojong and the treasure texts; they also reflect Lepcha fears about cultural dispersion. Present-day narratives about both hidden lands reference notable political events in modern Sikkimese history (encounters with the British; the Chinese occupation of Tibet).