4 resultados para LDPC decoding
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Recoding embraces mechanisms that augment the rules of standard genetic decoding. The deviations from standard decoding are often purposeful and their realisation provides diverse and flexible regulatory mechanisms. Recoding events such as programed ribosomal frameshifting are especially plentiful in viruses. In most organisms only a few cellular genes are known to employ programed ribosomal frameshifting in their expression. By far the most prominent and therefore well-studied case of cellular +1 frameshifting is in expression of antizyme mRNAs. The protein antizyme is a key regulator of polyamine levels in most eukaryotes with some exceptions such as plants. A +1 frameshifting event is required for the full length protein to be synthesized and this requirement is a conserved feature of antizyme mRNAs from yeast to mammals. The efficiency of the frameshifting event is dependent on the free polyamine levels in the cell. cis-acting elements in antizyme mRNAs such as specific RNA structures are required to stimulate the frameshifting efficiency. Here I describe a novel stimulator of antizyme +1 frameshifting in the Agaricomycotina class of Basidiomycete fungi. It is a nascent peptide that acts from within the ribosome exit tunnel to stimulate frameshifting efficiency in response to polyamines. The interactions of the nascent peptide with components of the peptidyl transferase centre and the protein exit tunnel emerge in our understanding as powerful means which the cell employs for monitoring and tuning the translational process. These interactions can modulate the rate of translation, protein cotranslational folding and localization. Some nascent peptides act in concert with small molecules such as polyamines or antibiotics to stall the ribosome. To these known nascent peptide effects we have added that of a stimulatory effect on the +1 frameshifting in antizyme mRNAs. It is becoming evident that nascent peptide involvement in regulation of translation is a much more general phenomenon than previously anticipated.
Resumo:
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Resumo:
mRNA translation in many ciliates utilizes variant genetic codes where stop codons are reassigned to specify amino acids. To characterize the repertoire of ciliate genetic codes, we analyzed ciliate transcriptomes from marine environments. Using codon substitution frequencies in ciliate protein-coding genes and their orthologs, we inferred the genetic codes of 24 ciliate species. Nine did not match genetic code tables currently assigned by NCBI. Surprisingly, we identified a novel genetic code where all three standard stop codons (TAA, TAG, and TGA) specify amino acids in Condylostoma magnum. We provide evidence suggesting that the functions of these codons in C. magnum depend on their location within mRNA. They are decoded as amino acids at internal positions, but specify translation termination when in close proximity to an mRNA 3' end. The frequency of stop codons in protein coding sequences of closely related Climacostomum virens suggests that it may represent a transitory state.mRNA translation in many ciliates utilizes variant genetic codes where stop codons are reassigned to specify amino acids. To characterize the repertoire of ciliate genetic codes, we analyzed ciliate transcriptomes from marine environments. Using codon substitution frequencies in ciliate protein-coding genes and their orthologs, we inferred the genetic codes of 24 ciliate species. Nine did not match genetic code tables currently assigned by NCBI. Surprisingly, we identified a novel genetic code where all three standard stop codons (TAA, TAG, and TGA) specify amino acids in Condylostoma magnum. We provide evidence suggesting that the functions of these codons in C. magnum depend on their location within mRNA. They are decoded as amino acids at internal positions, but specify translation termination when in close proximity to an mRNA 3' end. The frequency of stop codons in protein coding sequences of closely related Climacostomum virens suggests that it may represent a transitory state.
Resumo:
Ribosome profiling (Ribo-seq), a promising technology for exploring ribosome decoding rates, is characterized by the presence of infrequent high peaks in ribosome footprint density and by long alignment gaps. Here, to reduce the impact of data heterogeneity we introduce a simple normalization method, Ribo-seq Unit Step Transformation (RUST). RUST is robust and outperforms other normalization techniques in the presence of heterogeneous noise. We illustrate how RUST can be used for identifying mRNA sequence features that affect ribosome footprint densities globally. We show that a few parameters extracted with RUST are sufficient for predicting experimental densities with high accuracy. Importantly the application of RUST to 30 publicly available Ribo-seq data sets revealed a substantial variation in sequence determinants of ribosome footprint frequencies, questioning the reliability of Ribo-seq as an accurate representation of local ribosome densities without prior quality control. This emphasizes our incomplete understanding of how protocol parameters affect ribosome footprint densities.