3 resultados para LABORATORY

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a broad range of experiments based on an aerosol flow-tube system to probe the interactions between atmospherically relevant aerosols with trace gases. This apparatus was used to obtain simultaneous optical and size distribution measurements using FTIR and SMPS measurements respectively as a function of relative humidity and aerosol chemical composition. Heterogeneous reactions between various ratios of ammonia gas and acidic aerosols were studied in aerosol form as opposed to bulk solutions. The apparatus is unique, in that it employed two aerosol generation methods to follow the size evolution of the aerosol while allowing detailed spectroscopic investigation of its chemical content. A novel chemiluminescence apparatus was also used to measure [NH4+]. SO2.H2O is an important species as it represents the first intermediate in the overall atmospheric oxidation process of sulfur dioxide to sulfuric acid. This complex was produced within gaseous, aqueous and aerosol SO2 systems. The addition of ammonia, gave mainly hydrogen sulfite tautomers and disulfite ions. These species were prevalent at high humidities enhancing the aqueous nature of sulfur (IV) species. Their weak acidity is evident due to the low [NH4+] produced. An increasing recognition that dicarboxylic acids may contribute significantly to the total acid burden in polluted urban environments is evident in the literature. It was observed that speciation within the oxalic, malonic and succinic systems shifted towards the most ionised form as the relative humidity was increased due to complete protonisation. The addition of ammonia produced ammonium dicarboxylate ions. Less reaction for ammonia with the malonic and succinic species were observed in comparison to the oxalic acid system. This observation coincides with the decrease in acidity of these organic species. The interaction between dicarboxylic acids and ‘sulfurous’/sulfuric acid has not been previously investigated. Therefore the results presented here are original to the field of tropospheric chemistry. SHO3-; S2O52-; HSO4-; SO42- and H1,3,5C2,3,4O4-;C2,3,4O4 2- were the main components found in the complex inorganic-organic systems investigated here. The introduction of ammonia produced ammonium dicarboxylate as well as ammonium disulfite/sulfate ions and increasing the acid concentrations increased the total amount of [NH4+].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous laboratory experiments have been performed in an attempt to mimic atmospheric secondary organic aerosol (SOA) formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. In this study, we generated SOA in a simulation chamber from the ozonolysis of α-pinene and a biogenic volatile organic compound (BVOC) mixture containing α- and β-pinene, Δ3-carene, and isoprene. The detailed molecular composition of laboratory-generated SOA was compared with that of background ambient aerosol collected at a boreal forest site (Hyytiälä, Finland) and an urban location (Cork, Ireland) using direct infusion nanoelectrospray ultrahigh resolution mass spectrometry. Kendrick Mass Defect and Van Krevelen approaches were used to identify and compare compound classes and distributions of the detected species. The laboratory-generated SOA contained a distinguishable group of dimers that was not observed in the ambient samples. The presence of dimers was found to be less pronounced in the SOA from the VOC mixtures when compared to the one component precursor system. The elemental composition of the compounds identified in the monomeric region from the ozonolysis of both α-pinene and VOC mixtures represented the ambient organic composition of particles collected at the boreal forest site reasonably well, with about 70% of common molecular formulae. In contrast, large differences were found between the laboratory-generated BVOC samples and the ambient urban sample. To our knowledge this is the first direct comparison of molecular composition of laboratory-generated SOA from BVOC mixtures and ambient samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On-farm biogas production is typically associated with forage maize as the biomass source. Digesters are designed and operated with the focus of optimising the conditions for this feedstock. Thus, such systems may not be ideally suited to the digestion of grass. Ireland has ca. 3.85 million ha of grassland. Annual excess grass, surplus to livestock requirements, could potentially fuel an anaerobic digestion industry. Biomethane associated with biomass from 1.1 % of grassland in Ireland, could potentially generate over 10 % renewable energy supply in transport. This study aims to identify and optimise technologies for the production of biomethane from grass silage. Mono-digestion of grass silage and co-digestion with slurry, as would occur on Irish farms, is investigated in laboratory trials. Grass silage was shown to have 7 times greater methane potential than dairy slurry on a fresh weight basis (107 m3 t-1 v 16 m3 t-1). However, comprehensive trace element profiles indicated that cobalt, iron and nickel are deficient in mono-digestion of grass silage at a high organic loading rate (OLR) of 4.0 kg VS m-3 d-1. The addition of a slurry co-substrate was beneficial due to its wealth of essential trace elements. To stimulate hydrolysis of high lignocellulose grass silage, particle size reduction (physical) and rumen fluid addition (biological) were investigated. In a continuous trial, digestion of grass silage of <1 cm particle size achieved a specific methane yield of 371 L CH4 kg-1 VS when coupled with rumen fluid addition. The concept of demand driven biogas was also examined in a two-phase digestion system (leaching with UASB). When demand for electricity is low it is recommended to disconnect the UASB from the system and recirculate rumen fluid to increase volatile fatty acid (VFA) and soluble chemical oxygen demand (SCOD) production whilst minimising volatile solids (VS) destruction. At times of high demand for electricity, connection of the UASB increases the destruction of volatiles and associated biogas production. The above experiments are intended to assess a range of biogas production options from grass silage with a specific focus on maximising methane yields and provide a guideline for feasible design and operation of on-farm digesters in Ireland.