3 resultados para Keywords: Hadron-Hadron Scattering

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work described in this thesis reports the structural changes induced on micelles under a variety of conditions. The micelles of a liquid crystal film and dilute solutions of micelles were subjected to high pressure CO2 and selected hydrocarbon environments. Using small angle neutron scattering (SANS) techniques the spacing between liquid crystal micelles was measured in-situ. The liquid crystals studied were templated from different surfactants with varying structural characteristics. Micelles of a dilute surfactant solution were also subjected to elevated pressures of varying gas atmospheres. Detailed modelling of the in-situ SANS experiments revealed information of the size and shape of the micelles at a number of different pressures. Also reported in this thesis is the characterisation of mesoporous materials in the confined channels of larger porous materials. Periodic mesoporous organosilicas (PMOs) were synthesised within the channels of anodic alumina membranes (AAM) under different conditions, including drying rates and precursor concentrations. In-situ small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) was used to determine the pore morphology of the PMO within the AAM channels. PMO materials were also used as templates in the deposition of gold nanoparticles and subsequently used in the synthesis of germanium nanostructures. Polymer thin films were also employed as templates for the directed deposition of gold nanoparticles which were again used as seeds for the production of germanium nanostructures. A supercritical CO2 (sc-CO2) technique was successfully used during the production of the germanium nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The substitution of a small fraction x of nitrogen atoms, for the group V elements in conventional III-V semiconductors such as GaAs and GaSb strongly perturbs the conduction band of the host semiconductor. In this thesis we investigate the effects of nitrogen states on the band dispersion, carrier scattering and mobility of dilute nitride alloys. In the supercell model we solve the single particle Hamiltonian for a very large supercell containing randomly placed nitrogen. This model predicts a gap in the density of states of GaNxAs1−x, where this gap is filled in the Green’s function model. Therefore we develop a self-consistent Green’s function (SCGF) approach, which provides excellent agreement with supercell calculations and reveals a gap in the DOS, in contrast with the results of previous non-self-consistent Green’s function calculations. However, including the distribution of N states destroys this gap, as seen in experiment. We then examine the high field transport of carriers by solving the steadystate Boltzmann transport equation and find that it is necessary to include the full distribution of N levels in order to account for the small, low-field mobility and the absence of a negative differential velocity regime observed experimentally with increasing x. Overall the results account well for a wide range of experimental data. We also investigate the band structure, scattering and mobility of carriers by finding the poles of the SCGF, which gives lower carrier mobility for GaNxAs1−x, compared to those already calculated, in better agreement with experiments. The calculated optical absorption spectra for InyGa1−yNxAs1−x and GaNxSb1−x using the SCGF agree well with the experimental data, confirming the validity of this approach to study the band structure of these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores a new method to fabricate SERS detection platforms formed by large area self-assembled Au nanorod arrays. For the fabrication of these new SERS platforms a new droplet deposition method for the self-assembly of Au nanorods was developed. The method, based in the controlled evaporation of organic suspensions of Au nanorods, was used for the fabrication of horizontal and vertical arrays of Au nanorods over large areas (100μm2). The fabricated nanorods arrays showed a high degree of order measured by SEM and optical microscopy over mm2 areas, but unfortunately they detached from the support when immersed in any analyte solutions. In order to improve adhesion of arrays to the support and clean off residual organic matter, we introduced an additional stamping process. The stamping process allows the immobilization of the arrays on different flexible and rigid substrates, whose feasibility as SERS platforms were tested satisfactory with the model molecule 4ABT. Following the feasibility study, the substrates were used for the detection of the food contaminant Crystal Violet and the drug analogue Benzocaine as examples of recognition of health menaces in real field applications.