5 resultados para Jenny Boylan

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neo-paganism is a vibrant, dynamic global movement, which has had a significant cultural impact. Neo-paganism is an umbrella term for a wide range of spiritual practices, often described as nature- or earth-based spirituality. There are different “paths” or spiritual traditions within this movement, of which Druidry, Wicca and other forms of Pagan Witchcraft are included in this research. The present work is an ethnographic study of the worldview and ritual practices of the Irish neo-pagan community. It is an enquiry into (a) what characterises the neo-pagan worldview and (b) how this worldview is expressed through ritual behaviour. In order to collect data, the methodology of participant observation and ethnographic interviewing was employed. The thesis comprises a collection of “insider” accounts of what it is like to be a neo-pagan in Ireland and analysis of these narratives, which gives insight into different aspects of neopagan culture. In the discussion, the use of mythology is examined in regard to how mythic narrative is connected to identity formation. Irish cultural symbols are observed as resources utilised in the construction of the movement’s overall character. The interconnectedness of the natural landscape, the numinous and mythology gives rise to creative expression through various forms of neo-pagan artworks, which are discussed herein. The identifying features and key issues of Irish neo-pagan culture are addressed. These key issues are expressed as prominent themes and symbols of their discourse. Neo-pagan dialogue often features discussion of the relationship that this cultural group has with the Irish landscape, history, and indigenous and popular Irish religion. Some of the specific aspects of neo-pagan culture examined are magical worldview, the notion of holism, different types of ritual practices (festivals, life cycle rituals, healing), and material culture. The thesis presents an in-depth analysis of neopagan cultural expressions and their significance as cultural processes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electroencephalogram (EEG) is a medical technology that is used in the monitoring of the brain and in the diagnosis of many neurological illnesses. Although coarse in its precision, the EEG is a non-invasive tool that requires minimal set-up times, and is suitably unobtrusive and mobile to allow continuous monitoring of the patient, either in clinical or domestic environments. Consequently, the EEG is the current tool-of-choice with which to continuously monitor the brain where temporal resolution, ease-of- use and mobility are important. Traditionally, EEG data are examined by a trained clinician who identifies neurological events of interest. However, recent advances in signal processing and machine learning techniques have allowed the automated detection of neurological events for many medical applications. In doing so, the burden of work on the clinician has been significantly reduced, improving the response time to illness, and allowing the relevant medical treatment to be administered within minutes rather than hours. However, as typical EEG signals are of the order of microvolts (μV ), contamination by signals arising from sources other than the brain is frequent. These extra-cerebral sources, known as artefacts, can significantly distort the EEG signal, making its interpretation difficult, and can dramatically disimprove automatic neurological event detection classification performance. This thesis therefore, contributes to the further improvement of auto- mated neurological event detection systems, by identifying some of the major obstacles in deploying these EEG systems in ambulatory and clinical environments so that the EEG technologies can emerge from the laboratory towards real-world settings, where they can have a real-impact on the lives of patients. In this context, the thesis tackles three major problems in EEG monitoring, namely: (i) the problem of head-movement artefacts in ambulatory EEG, (ii) the high numbers of false detections in state-of-the-art, automated, epileptiform activity detection systems and (iii) false detections in state-of-the-art, automated neonatal seizure detection systems. To accomplish this, the thesis employs a wide range of statistical, signal processing and machine learning techniques drawn from mathematics, engineering and computer science. The first body of work outlined in this thesis proposes a system to automatically detect head-movement artefacts in ambulatory EEG and utilises supervised machine learning classifiers to do so. The resulting head-movement artefact detection system is the first of its kind and offers accurate detection of head-movement artefacts in ambulatory EEG. Subsequently, addtional physiological signals, in the form of gyroscopes, are used to detect head-movements and in doing so, bring additional information to the head- movement artefact detection task. A framework for combining EEG and gyroscope signals is then developed, offering improved head-movement arte- fact detection. The artefact detection methods developed for ambulatory EEG are subsequently adapted for use in an automated epileptiform activity detection system. Information from support vector machines classifiers used to detect epileptiform activity is fused with information from artefact-specific detection classifiers in order to significantly reduce the number of false detections in the epileptiform activity detection system. By this means, epileptiform activity detection which compares favourably with other state-of-the-art systems is achieved. Finally, the problem of false detections in automated neonatal seizure detection is approached in an alternative manner; blind source separation techniques, complimented with information from additional physiological signals are used to remove respiration artefact from the EEG. In utilising these methods, some encouraging advances have been made in detecting and removing respiration artefacts from the neonatal EEG, and in doing so, the performance of the underlying diagnostic technology is improved, bringing its deployment in the real-world, clinical domain one step closer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The standard early markers for identifying and grading HIE severity, are not sufficient to ensure all children who would benefit from treatment are identified in a timely fashion. The aim of this thesis was to explore potential early biomarkers of HIE. Methods: To achieve this a cohort of infants with perinatal depression was prospectively recruited. All infants had cord blood samples drawn and biobanked, and were assessed with standardised neurological examination, and early continuous multi-channel EEG. Cord samples from a control cohort of healthy infants were used for comparison. Biomarkers studied included; multiple inflammatory proteins using multiplex assay; the metabolomics profile using LC/MS; and the miRNA profile using microarray. Results: Eighty five infants with perinatal depression were recruited. Analysis of inflammatory proteins consisted of exploratory analysis of 37 analytes conducted in a sub-population, followed by validation of all significantly altered analytes in the remaining population. IL-6 and IL-6 differed significantly in infants with a moderate/severely abnormal vs. a normal-mildly abnormal EEG in both cohorts (Exploratory: p=0.016, p=0.005: Validation: p=0.024, p=0.039; respectively). Metabolomic analysis demonstrated a perturbation in 29 metabolites. A Cross- validated Partial Least Square Discriminant Analysis model was developed, which accurately predicted HIE with an AUC of 0.92 (95% CI: 0.84-0.97). Analysis of the miRNA profile found 70 miRNA significantly altered between moderate/severely encephalopathic infants and controls. miRNA target prediction databases identified potential targets for the altered miRNA in pathways involved in cellular metabolism, cell cycle and apoptosis, cell signaling, and the inflammatory cascade. Conclusion: This thesis has demonstrated that the recruitment of a large cohortof asphyxiated infants, with cord blood carefully biobanked, and detailed early neurophysiological and clinical assessment recorded, is feasible. Additionally the results described, provide potential alternate and novel blood based biomarkers for the identification and assessment of HIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article explores some of the ways of remembering and honouring the ancestors in contemporary Pagan religious traditions, with a focus on the Irish context. An overview is provided of how the "ancestors" are conceptualised within Paganism, as well as where they are believed to be located in the afterlife or Otherworld. Veneration of ancestral peoples is a significant part of many Pagan rituals. Some methods of honouring the dead, and contacting the dead, through ritual practices are described. Remembering and honouring the dead, whether distant forebears or more recent relatives, is particularly important during the Pagan celebration of the festival of Samhain, feast of the dead, on October 31. Issues around ancestors, lineages and ethnicity are significant in many Pagan traditions, and attention is paid to these factors in terms of the Irish Pagan community's sense of cultural belonging as well as their sense of place in a physical respect in relation to the landscape, proximity of sacred sites, and other features of their geographical location.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electroencephalogram (EEG) is an important noninvasive tool used in the neonatal intensive care unit (NICU) for the neurologic evaluation of the sick newborn infant. It provides an excellent assessment of at-risk newborns and formulates a prognosis for long-term neurologic outcome.The automated analysis of neonatal EEG data in the NICU can provide valuable information to the clinician facilitating medical intervention. The aim of this thesis is to develop a system for automatic classification of neonatal EEG which can be mainly divided into two parts: (1) classification of neonatal EEG seizure from nonseizure, and (2) classifying neonatal background EEG into several grades based on the severity of the injury using atomic decomposition. Atomic decomposition techniques use redundant time-frequency dictionaries for sparse signal representations or approximations. The first novel contribution of this thesis is the development of a novel time-frequency dictionary coherent with the neonatal EEG seizure states. This dictionary was able to track the time-varying nature of the EEG signal. It was shown that by using atomic decomposition and the proposed novel dictionary, the neonatal EEG transition from nonseizure to seizure states could be detected efficiently. The second novel contribution of this thesis is the development of a neonatal seizure detection algorithm using several time-frequency features from the proposed novel dictionary. It was shown that the time-frequency features obtained from the atoms in the novel dictionary improved the seizure detection accuracy when compared to that obtained from the raw EEG signal. With the assistance of a supervised multiclass SVM classifier and several timefrequency features, several methods to automatically grade EEG were explored. In summary, the novel techniques proposed in this thesis contribute to the application of advanced signal processing techniques for automatic assessment of neonatal EEG recordings.