6 resultados para Isolated Muscle Bed
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Vascular smooth muscle cells (VSMC) are one of the key players in the pathogenesis of cardiovascular diseases. The origin of neointimal VSMC has thus become a prime focus of research. VSMC originate from multiple progenitors cell types. In embryo the well-defined sources of VSMC include; neural crest cells, proepicardial cells and EPC. In adults, though progenitor cells from bone marrow (BM), circulation and tissues giving rise to SMC have been identified, no progress has been made in terms of isolating highly proliferative clonal population of adult stem cells with potential to differentiate into SMC. Smooth muscle like stem progenitor cells (SMSPC) were isolated from cardiopulmonary bypass filters of adult patients undergoing CABG. Rat SMSPC have previously been isolated by our group from the bone marrow of Fischer rats and also from the peripheral blood of monocrotaline induced pulmonary hypertension (MCT-PHTN) animal model. Characterization of novel SMSPC exhibited stem cell characteristics and machinery for differentiation into SMC. The expression of Isl-1 on SMSPC provided unique molecular identity to these circulating stem progenitor cells. The functional potential of SMSPC was determined by monitoring adoptive transfer of GFP+ SMSPC in rodent models of vascular injury; carotid injury and MCT-PHTN. The participation of SMSPC in vascular pathology was confirmed by quantifying the peripheral blood, and engrafted levels of SMSPC using RT-PCR. In terms of translating into clinical practice, SMSPC could be a good tool for detecting the atherosclerotic plaque burden. The current study demonstrates the existence of novel adult stem progenitor cells in circulation, with the potential role in vascular pathology.
Resumo:
The observations of Hooke (1665), Schleiden & Schwann (1839) and Virchow (1855) led to the identification of the cell as the basic structural unit of living material. In the intervening years, it has been firmly established that the chemical processes which underlie the proper functioning, development and reproduction of the organism are cellular activities. The development of the electron microscope has enabled cell structure to be studied in detail. A picture of the cell as an entity with a complex and highly organised internal structure has emerged from the work of Palade, Porter, Fernandez-Moran and many others. Although cells from different tissues and organisms differ in aspects of their structure and consequently in function, they have several features in common. A retentive membrane encloses a number of cell constituents, which include membrane-enclosed subcellular structures known as organelles. The cells of most tissues also contain a reticulum or system of branching tubules. The interplay of the biochemical activities of these structures enables the cell to function. Almost thirty years ago, Claude, Palade, Schneider, Hogeboom, de Duve and others set out to analytically fractionate the subcellular components obtained after the fragmentation of liver cells. This approach has become known as subcellular fractionation, and signalled a major conceptual breakthrough in biochemistry (reviewed by de Duve, 1964, 1967, 1971). The significance of this breakthrough has been underlined by the award of the 1974 Nobel Prize in Medicine to de Duve, Palade and Claude. This thesis is concerned with the application of subcellular fractionation techniques to the separation and characterisation of the membrane systems of the rabbit skeletal muscle cell.
Resumo:
Actinins are cytoskeleton proteins that cross-link actin filaments. Evolution of the actinin family resulted in the formation of Ca++-insensitive muscle isoforms (actinin-2 and- 3) and Ca++-sensitive non-muscle isoforms (actinin-1 and -4) with regard to their actin-binding function. Despite high sequence similarity, unique properties have been ascribed to actinin-4 compared with actinin-1. Actinin-4 is the predominant isoform reported to be associated with the cancer phenotype. Actinin-4, but not actinin-1, is essential for normal glomerular function in the kidney and and is able to translocate to the nucleus to regulate transcription. To understand the molecular basis for such isoform-specific functions I have comprehensively compared these proteins in terms of localisation, migration, alternative splicing, actin-binding properties, heterodimer formation and molecular interactions for the first time. This work characterises a number of commercially available actinin antibodies and in doing so, identifies actinin-1, -2 and -4 isoform-specific antibodies that enabled studies of actinin expression and localisation. This work identifies the actinin rod domain as the predominant domain that influences actinin localisation however localisation is likely to be effected by the entire actinin protein. si-RNA- mediated knockdown of actinin-1 and -4 did not affect migration in a number of cell lines highlighting that migration may only require a fraction of total non-muscle actinin levels. This work finds that the Ca++-insensitive variant of actinin-4 is expressed only in the nervous system and thus cannot be regarded as a smooth muscle isoform, as is the case for the Ca++-insensitive variant of actinin-1. This work also identifies a previously unreported exon 19a+19b expressing variant of actinin-4 in human skeletal muscle. This work finds that alternative splice variants of actinin-1 and -4 are co-expressed in a number of tissues, in particular the brain. In contrast to healthy brain, glioblastoma cells express Ca++-sensitive variants of both actinin-1 and -4. Actin-binding properties of actinin-1 and -4 are similar and are unlikely to explain isoform-specific functions. Surprisingly, this work reveals that actinin-1/-4 heterodimers, rather than homodimers, are the most abundant form of actinin in many cancer cell lines. Taken together this data suggests that actinin-1 and -4 cannot be viewed as distinct entities from each other but rather as proteins that can exist in both homodimeric and heterodimeric forms. Finally, this work employs yeast two-hybrid and proteomic approaches to identify actinin-interacting proteins. In doing so, this work identifies a number of putative actinin-4 specific interacting partners that may help to explain some of the unique functions attributed the actinin-4. The observation of alternative splice variants of actinin-1 and -4 combined with the observed potential of these proteins to form homodimers and heterodimers suggests that homodimers and heterodimers with novel actin-binding properties and interaction networks may exist. The ability to behave in this manner may have functional implications. This may be of importance considering that these proteins are central to such processes as cell migration and adhesion. This significantly alters our view of the non-muscle actinins.
Resumo:
In recent years, the potential to positively modulate human health through dietary approaches has received considerable attention. Bioactive peptides which are released during the hydrolysis or fermentation of food proteins or following digestion may exert beneficial physiological effects in vivo. The aim of this work was to isolate, characterise and evaluate Angiotensin-І-converting enzyme (ACE-І) inhibitory, antimicrobial and antioxidant peptides from the bovine myofibrillar proteins actin and myosin. In order to generate these peptides, the myofibrillar proteins actin and myosin were hydrolysed with digestive enzymes pepsin, trypsin and α-chymotrypsin, or with the industrial thermolysin-like enzyme “Thermoase”, Amano Inc. It was found that each hydrolysate generated contained peptides which possessed ACE inhibitory, antioxidant and antimicrobial activity. The peptides responsible in part for the observed ACE inhibitory, antioxidant and antimicrobial activity of a number of hydrolysates were isolated using the method of RP-HPLC and the bioactive peptides contained within each active fraction was determined using either MALDI-TOF MS/MS or N-terminal peptide sequencing. During the course of this thesis six ACE inhibitory and five antimicrobial peptides were identified. It was determined that the reported antioxidant activity was a direct result of a number of peptides working in synergy with each other. The IC50 values of the six ACE inhibitory peptides ranged in values of 6.85 to 75.7 µM which compare favourably to values previously reported for other food derived ACE inhibitory peptides, particularly the well known milk peptides IPP and VPP, IC50 values of 5 and 9 µM respectively. All five antimicrobial peptides identified in this thesis displayed activity against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Listeria innocua with MIC values ranging from 0.625 to10 mM. The activity of each antimicrobial peptide was strain specific. Furthermore the role and importance of charged amino acids to the activity of antimicrobial peptides was also determined. Generally the removal of charged amino acids from the sequence of antimicrobial peptides resulted in a loss of antimicrobial activity. In conclusion, this thesis revealed that a range of bioactive peptides exhibiting ACE inhibitory, antioxidant and antimicrobial activities were encrypted in bovine myofibrillar proteins that could be released using digestive and industrial enzymes. Finally enzymatic hydrolysates of muscle proteins could potentially be incorporated into functional foods; however, the potential health benefits would need to be proven in human clinical studies.
Resumo:
The differentiation of stem cells into multiple lineages has been explored in vascular regenerative medicine. However, in the case of smooth muscle cells (SMC), issues exist concerning inefficient rates of differentiation. In stem cells, multiple repressors potentially downregulate myocardin, the potent SRF coactivator induced SMC transcription including Krüppel like zinc finger transcription factor-4 (KLF4). This thesis aimed to explore the role of KLF4 in the regulation of myocardin gene expression in human smooth muscle stem/progenitor cells (hSMSPC), a novel circulating stem cell identified in our laboratory which expresses low levels of myocardin and higher levels of KLF4. hSMSPC cells cultured in SmGM2 1% FBS with TGF-β1 (5 ng/ml “differentiation media”) show limited SMC cell differentiation potential. Furthermore, myocardin transduced hSMSPC cells cultured in differentiation media induced myofilamentous SMC like cells with expression of SM markers. Five potential KLF4 binding sites were identified in silico within 3.9Kb upstream of the translational start site of the human myocardin promoter. Chromatin immunoprecipitation assays verified that endogenous KLF4 binds the human myocardin promoter at -3702bp with Respect to the translation start site (-1). Transduction of lentiviral vectors encoding either myocardin cDNA (LV_myocardin) or KLF4 targeting shRNA (LV_shKLF4 B) induced human myocardin promoter activity in hSMSPCs. Silencing of KLF4 expression in differentiation media induced smooth muscle like morphology by day 5 in culture and increased overtime with expression of SMC markers in hSMSPCs. Implantation of silastic tubes into the rat peritoneal cavity induces formation of a tissue capsule structure which may be used as vascular grafts. Rat SMSPCs integrate into, strengthen and enhance the SMC component of such tubular capsules. These data demonstrate that KLF4 directly represses myocardin gene expression in hSMSPCs, which when differentiated, provide a potential source of SMCs in the development of autologous vascular grafts in regenerative medicine.
Resumo:
Chronic sustained hypoxia (CH) induces functional weakness, atrophy, and mitochondrial remodelling in the diaphragm muscle. Animal models of CH present with changes similar to patients with respiratory-related disease, thus, elucidating the molecular mechanisms driving these adaptations is clinically important. We hypothesize that ROS are pivotal in diaphragm muscle adaptation to CH. C57BL6/J mice were exposed to CH (FiO2=0.1) for one, three, and six weeks. Sternohyoid (upper airway dilator), extensor digitorum longus (EDL), and soleus were studied as reference muscles as well as the diaphragm. The diaphragm was profiled using a redox proteomics approach followed by mass spectrometry. Following this, redox-modified metabolic enzyme activities and atrophy signalling were assessed using spectrophotometric assays and ELISA. Diaphragm isotonic performance was assessed after six weeks of CH ± chronic antioxidant supplementation. Protein carbonyl and free thiol content in the diaphragm were increased and decreased respectively after six weeks of CH – indicative of protein oxidation. These changes were temporally modulated and muscle specific. Extensive remodelling of metabolic proteins occurred and the stress reached the cross-bridge. Metabolic enzyme activities in the diaphragm were, for the most part, decreased by CH and differential muscle responses were observed. Redox sensitive chymotrypsin-like proteasome activity of the diaphragm was increased and atrophy signalling was observed through decreased phospho-FOXO3a and phospho-mTOR. Phospho-p38 MAPK content was increased and this was attenuated by antioxidant treatment. Hypoxia decreased power generating capacity of the diaphragm and this was restored by N-acetyl-cysteine (NAC) but not by tempol. Redox remodelling is pivotal for diaphragm adaptation to chronic sustained hypoxia. Muscle changes are dependent on duration of the hypoxia stimulus, activity profile of the muscle, and molecular composition of the muscle. The working respiratory muscles and slow oxidative fibres are particularly susceptible. NAC (antioxidant) may be useful as an adjunct therapy in respiratory-related diseases characterised by hypoxic stress.