7 resultados para Interplanetary magnetic field
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Single-phase multiferroic materials are of considerable interest for future memory and sensing applications. Thin films of Aurivillius phase Bi 7Ti3Fe3O21 and Bi6Ti 2.8Fe1.52Mn0.68O18 (possessing six and five perovskite units per half-cell, respectively) have been prepared by chemical solution deposition on c-plane sapphire. Superconducting quantum interference device magnetometry reveal Bi7Ti3Fe 3O21 to be antiferromagnetic (TN = 190 K) and weakly ferromagnetic below 35 K, however, Bi6Ti2.8Fe 1.52Mn0.68O18 gives a distinct room-temperature in-plane ferromagnetic signature (Ms = 0.74 emu/g, μ0Hc =7 mT). Microstructural analysis, coupled with the use of a statistical analysis of the data, allows us to conclude that ferromagnetism does not originate from second phase inclusions, with a confidence level of 99.5%. Piezoresponse force microscopy (PFM) demonstrates room-temperature ferroelectricity in both films, whereas PFM observations on Bi6Ti2.8Fe1.52Mn0.68O18 show Aurivillius grains undergo ferroelectric domain polarization switching induced by an applied magnetic field. Here, we show for the first time that Bi6Ti2.8Fe1.52Mn0.68O18 thin films are both ferroelectric and ferromagnetic and, demonstrate magnetic field-induced switching of ferroelectric polarization in individual Aurivillius phase grains at room temperature.
Resumo:
This paper reports on a low frequency piezoelectric energy harvester that scavenges energy from a wire carrying an AC current. The harvester is described, fabricated and characterized. The device consists of a silicon cantilever with integrated piezoelectric capacitor and proof-mass that incorporates a permanent magnet. When brought close to an AC current carrying wire, the magnet couples to the AC magnetic field from a wire, causing the cantilever to vibrate and generate power. The measured average power dissipated across an optimal resistive load was 1.5 μW. This was obtained by exciting the device into mechanical resonance using the electro-magnetic field from the 2 A source current. The measurements also reveal that the device has a nonlinear response that is due to a spring hardening mechanism.
Resumo:
Multiferroic materials displaying coupled ferroelectric and ferromagnetic order parameters could provide a means for data storage whereby bits could be written electrically and read magnetically, or vice versa. Thin films of Aurivillius phase Bi6Ti2.8Fe1.52Mn0.68O18, previously prepared by a chemical solution deposition (CSD) technique, are multiferroics demonstrating magnetoelectric coupling at room temperature. Here, we demonstrate the growth of a similar composition, Bi6Ti2.99Fe1.46Mn0.55O18, via the liquid injection chemical vapor deposition technique. High-resolution magnetic measurements reveal a considerably higher in-plane ferromagnetic signature than CSD grown films (MS = 24.25 emu/g (215 emu/cm3), MR = 9.916 emu/g (81.5 emu/cm3), HC = 170 Oe). A statistical analysis of the results from a thorough microstructural examination of the samples, allows us to conclude that the ferromagnetic signature can be attributed to the Aurivillius phase, with a confidence level of 99.95%. In addition, we report the direct piezoresponse force microscopy visualization of ferroelectric switching while going through a full in-plane magnetic field cycle, where increased volumes (8.6 to 14% compared with 4 to 7% for the CSD-grown films) of the film engage in magnetoelectric coupling and demonstrate both irreversible and reversible magnetoelectric domain switching.
Resumo:
In this thesis, the evanescent field sensing techniques of tapered optical nanofibres and microspherical resonators are investigated. This includes evanescent field spectroscopy of a silica nanofibre in a rubidium vapour; thermo-optical tuning of Er:Yb co-doped phosphate glass microspheres; optomechanical properties of microspherical pendulums; and the fabrication and characterisation of borosilicate microbubble resonators. Doppler-broadened and sub-Doppler absorption spectroscopic techniques are performed around the D2 transition (780.24 nm) of rubidium using the evanescent field produced at the waist of a tapered nanofibre with input probe powers as low as 55 nW. Doppler-broadened Zeeman shifts and a preliminary dichroic atomic vapour laser lock (DAVLL) line shape are also observed via the nanofibre waist with an applied magnetic field of 60 G. This device has the potential for laser frequency stabilisation while also studying the effects of atom-surface interactions. A non-invasive thermo-optical tuning technique of Er:Yb co-doped microspheres to specific arbitrary wavelengths is demonstrated particularly to 1294 nm and the 5S1/2F=3 to 5P3/2Fʹ=4 laser cooling transition of 85Rb. Reversible tuning ranges of up to 474 GHz and on resonance cavity timescales on the order of 100 s are reported. This procedure has prospective applications for sensing a variety of atomic or molecular species in a cavity quantum electrodynamics (QED) experiments. The mechanical characteristics of a silica microsphere pendulum with a relatively low spring constant of 10-4 Nm-1 are explored. A novel method of frequency sweeping the motion of the pendulum to determine its natural resonance frequencies while overriding its sensitivity to environmental noise is proposed. An estimated force of 0.25 N is required to actuate the pendulum by a displacement of (1-2) μm. It is suggested that this is of sufficient magnitude to be experienced between two evanescently coupled microspheres (photonic molecule) and enable spatial trapping of the micropendulum. Finally, single-input borosilicate microbubble resonators with diameters <100 μm are fabricated using a CO2 laser. Optical whispering gallery mode spectra are observed via evanescent coupling with a tapered fibre. A red-shift of (4-22) GHz of the resonance modes is detected when the hollow cavity was filled with nano-filtered water. A polarisation conversion effect, with an efficiency of 10%, is observed when the diameter of the coupling tapered fibre waist is varied. This effect is also achieved by simply varying the polarisation of the input light in the tapered fibre where the efficiency is optimised to 92%. Thus, the microbubble device acts as a reversible band-pass to band-stop optical filter for cavity-QED, integrated solid-state and semiconductor circuit applications.
Resumo:
Of late, the magnetic properties of micro/nano-structures have attracted intense research interest both fundamentally and technologically particularly to address the question that how the manipulation in the different layers of nanostructures, geometry of a patterned structure can affect the overall magnetic properties, while generating novel applications such as in magnetic sensors, storage devices, integrated inductive components and spintronic devices. Depending on the applications, materials with high, medium or low magnetic anisotropy and their possible manipulation are required. The most dramatic manifestation in this respect is the chance to manipulate the magnetic anisotropy over the intrinsic preferential direction of the magnetization, which can open up more functionality particularly for device applications. Types of magnetic anisotropies of different nanostructured materials and their manipulation techniques are investigated in this work. Detail experimental methods for the quantitative determination of magnetic anisotropy in nanomodulated Ni45Fe55 thin film are studied. Magnetic field induced in-plane rotations within the nanomodulated Ni45Fe55 continuous films revealed various rotational symmetries of magnetic anisotropy due to dipolar interactions showing a crossover from lower to higher fold of symmetry as a function of modulation geometry. In a second approach, the control of exchange anisotropy at ferromagnetic (FM) – aniferomagnetic (AFM) interface in multifferoic nanocomposite materials, where two different phase/types of materials were simultaneously synthesized, was investigated. The third part of this work was to study the electroplated thin films of metal alloy nanocomposite for enhanced exchange anisotropy. In this work a unique observation of an anti-clock wise as well as a clock wise hysteresis loop formation in the Ni,Fe solid solution with very low coercivity and large positive exchange anisotropy/exchange bias have been investigated. Hence, controllable positive and negative exchange anisotropy has been observed for the first time which has high potential applications such as in MRAM devices.
Resumo:
In this paper, the research focus is how to entangle magnetic dipoles to control/engineer magnetic properties of different devices at a submicron/nano scale. Here, we report the generation of synthetic arrays of tunable magnetic dipoles in a nanomodulated continuous ferromagnetic film. In-plane magnetic field rotations in modulated Ni 45Fe 55 revealed various rotational symmetries of magnetic anisotropy due to dipolar interaction with a crossover from lower to higher fold as a function of modulation geometry. Additionally, the effect of aspect ratio on symmetry shows a novel phase shift of anisotropy, which could be critical to manipulate the overall magnetic properties of the patterned film. The tendency to form vortex is in fact found to be very small, which highlights that the strong coupling between metastable dipoles is more favorable than vortex formation to minimize energy in this nanomodulated structure. This has further been corroborated by the observation of step hysteresis, magnetic force microscopy images of tunable magnetic dipoles, and quantitative micromagnetic simulations. An analytical expression has been derived to estimate the overall anisotropy accurately for nanomodulated film having low magnetocrystaline anisotropy. Derived mathematical expressions based on magnetic dipolar interaction are found to be in good agreement with our results.
Resumo:
In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron–proton (e−–p+) and electron–positron (e±) relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI). In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the e−–p+ jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the e± jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to a simulation without helical magnetic field. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields.