4 resultados para Interactive volume clipping

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to investigate the effect of the pad size ratio between the chip and board end of a solder joint on the shape of that solder joint in combination with the solder volume available. The shape of the solder joint is correlated to its reliability and thus of importance. For low density chip bond pad applications Flip Chip (FC) manufacturing costs can be kept down by using larger size board pads suitable for solder application. By using “Surface Evolver” software package the solder joint shapes associated with different size/shape solder preforms and chip/board pad ratios are predicted. In this case a so called Flip-Chip Over Hole (FCOH) assembly format has been used. Assembly trials involved the deposition of lead-free 99.3Sn0.7Cu solder on the board side, followed by reflow, an underfill process and back die encapsulation. During the assembly work pad off-sets occurred that have been taken into account for the Surface Evolver solder joint shape prediction and accurately matched the real assembly. Overall, good correlation was found between the simulated solder joint shape and the actual fabricated solder joint shapes. Solder preforms were found to exhibit better control over the solder volume. Reflow simulation of commercially available solder preform volumes suggests that for a fixed stand-off height and chip-board pad ratio, the solder volume value and the surface tension determines the shape of the joint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constraint programming has emerged as a successful paradigm for modelling combinatorial problems arising from practical situations. In many of those situations, we are not provided with an immutable set of constraints. Instead, a user will modify his requirements, in an interactive fashion, until he is satisfied with a solution. Examples of such applications include, amongst others, model-based diagnosis, expert systems, product configurators. The system he interacts with must be able to assist him by showing the consequences of his requirements. Explanations are the ideal tool for providing this assistance. However, existing notions of explanations fail to provide sufficient information. We define new forms of explanations that aim to be more informative. Even if explanation generation is a very hard task, in the applications we consider, we must manage to provide a satisfactory level of interactivity and, therefore, we cannot afford long computational times. We introduce the concept of representative sets of relaxations, a compact set of relaxations that shows the user at least one way to satisfy each of his requirements and at least one way to relax them, and present an algorithm that efficiently computes such sets. We introduce the concept of most soluble relaxations, maximising the number of products they allow. We present algorithms to compute such relaxations in times compatible with interactivity, achieving this by indifferently making use of different types of compiled representations. We propose to generalise the concept of prime implicates to constraint problems with the concept of domain consequences, and suggest to generate them as a compilation strategy. This sets a new approach in compilation, and allows to address explanation-related queries in an efficient way. We define ordered automata to compactly represent large sets of domain consequences, in an orthogonal way from existing compilation techniques that represent large sets of solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One problem in most three-dimensional (3D) scalar data visualization techniques is that they often overlook to depict uncertainty that comes with the 3D scalar data and thus fail to faithfully present the 3D scalar data and have risks which may mislead users’ interpretations, conclusions or even decisions. Therefore this thesis focuses on the study of uncertainty visualization in 3D scalar data and we seek to create better uncertainty visualization techniques, as well as to find out the advantages/disadvantages of those state-of-the-art uncertainty visualization techniques. To do this, we address three specific hypotheses: (1) the proposed Texture uncertainty visualization technique enables users to better identify scalar/error data, and provides reduced visual overload and more appropriate brightness than four state-of-the-art uncertainty visualization techniques, as demonstrated using a perceptual effectiveness user study. (2) The proposed Linked Views and Interactive Specification (LVIS) uncertainty visualization technique enables users to better search max/min scalar and error data than four state-of-the-art uncertainty visualization techniques, as demonstrated using a perceptual effectiveness user study. (3) The proposed Probabilistic Query uncertainty visualization technique, in comparison to traditional Direct Volume Rendering (DVR) methods, enables radiologists/physicians to better identify possible alternative renderings relevant to a diagnosis and the classification probabilities associated to the materials appeared on these renderings; this leads to improved decision support for diagnosis, as demonstrated in the domain of medical imaging. For each hypothesis, we test it by following/implementing a unified framework that consists of three main steps: the first main step is uncertainty data modeling, which clearly defines and generates certainty types of uncertainty associated to given 3D scalar data. The second main step is uncertainty visualization, which transforms the 3D scalar data and their associated uncertainty generated from the first main step into two-dimensional (2D) images for insight, interpretation or communication. The third main step is evaluation, which transforms the 2D images generated from the second main step into quantitative scores according to specific user tasks, and statistically analyzes the scores. As a result, the quality of each uncertainty visualization technique is determined.