6 resultados para Interaction Human-Digital TV

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview is given of a user interaction monitoring and analysis framework called BaranC. Monitoring and analysing human-digital interaction is an essential part of developing a user model as the basis for investigating user experience. The primary human-digital interaction, such as on a laptop or smartphone, is best understood and modelled in the wider context of the user and their environment. The BaranC framework provides monitoring and analysis capabilities that not only records all user interaction with a digital device (e.g. smartphone), but also collects all available context data (such as from sensors in the digital device itself, a fitness band or a smart appliances). The data collected by BaranC is recorded as a User Digital Imprint (UDI) which is, in effect, the user model and provides the basis for data analysis. BaranC provides functionality that is useful for user experience studies, user interface design evaluation, and providing user assistance services. An important concern for personal data is privacy, and the framework gives the user full control over the monitoring, storing and sharing of their data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigates some of the reasons for the reported difficulties experienced by writers when using editing software designed for structured documents. The overall objective was to determine if there are aspects of the software interfaces which militate against optimal document construction by writers who are not computer experts, and to suggest possible remedies. Studies were undertaken to explore the nature and extent of the difficulties, and to identify which components of the software interfaces are involved. A model of a revised user interface was tested, and some possible adaptations to the interface are proposed which may help overcome the difficulties. The methodology comprised: 1. identification and description of the nature of a ‘structured document’ and what distinguishes it from other types of document used on computers; 2. isolation of the requirements of users of such documents, and the construction a set of personas which describe them; 3. evaluation of other work on the interaction between humans and computers, specifically in software for creating and editing structured documents; 4. estimation of the levels of adoption of the available software for editing structured documents and the reactions of existing users to it, with specific reference to difficulties encountered in using it; 5. examination of the software and identification of any mismatches between the expectations of users and the facilities provided by the software; 6. assessment of any physical or psychological factors in the reported difficulties experienced, and to determine what (if any) changes to the software might affect these. The conclusions are that seven of the twelve modifications tested could contribute to an improvement in usability, effectiveness, and efficiency when writing structured text (new document selection; adding new sections and new lists; identifying key information typographically; the creation of cross-references and bibliographic references; and the inclusion of parts of other documents). The remaining five were seen as more applicable to editing existing material than authoring new text (adding new elements; splitting and joining elements [before and after]; and moving block text).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent developments in interactive technologies have seen major changes in the manner in which artists, performers, and creative individuals interact with digital music technology; this is due to the increasing variety of interactive technologies that are readily available today. Digital Musical Instruments (DMIs) present musicians with performance challenges that are unique to this form of computer music. One of the most significant deviations from conventional acoustic musical instruments is the level of physical feedback conveyed by the instrument to the user. Currently, new interfaces for musical expression are not designed to be as physically communicative as acoustic instruments. Specifically, DMIs are often void of haptic feedback and therefore lack the ability to impart important performance information to the user. Moreover, there currently is no standardised way to measure the effect of this lack of physical feedback. Best practice would expect that there should be a set of methods to effectively, repeatedly, and quantifiably evaluate the functionality, usability, and user experience of DMIs. Earlier theoretical and technological applications of haptics have tried to address device performance issues associated with the lack of feedback in DMI designs and it has been argued that the level of haptic feedback presented to a user can significantly affect the user’s overall emotive feeling towards a musical device. The outcome of the investigations contained within this thesis are intended to inform new haptic interface.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This thesis will examine the interaction between the user and the digital archive. The aim of the study is to support an in-depth examination of the interaction process, with a view to making recommendations and tools, for system designers and archival professionals, to promote digital archive domain development. Following a comprehensive literature review process, an urgent requirement for models was identified. The Model of Contextual Interaction presented in this thesis, aims to provide a conceptual model through which the interaction process, between the user and the digital archive, can be examined. Using the five-phased research development framework, the study will present a structured account of its methods, using a multi-method methodology to ensuring robust data collection and analysis. The findings of the study are presented across the Model of Contextual Interaction, and provide a basis on which recommendations and tools for system designers have been made. The thesis concludes with a summary of key findings, and a reflective account of how the findings and the Model of Contextual Interaction have impacted digital provision within the archive domain and how the model could be applied to other domains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phase-locked loops (PLLs) are a crucial component in modern communications systems. Comprising of a phase-detector, linear filter, and controllable oscillator, they are widely used in radio receivers to retrieve the information content from remote signals. As such, they are capable of signal demodulation, phase and carrier recovery, frequency synthesis, and clock synchronization. Continuous-time PLLs are a mature area of study, and have been covered in the literature since the early classical work by Viterbi [1] in the 1950s. With the rise of computing in recent decades, discrete-time digital PLLs (DPLLs) are a more recent discipline; most of the literature published dates from the 1990s onwards. Gardner [2] is a pioneer in this area. It is our aim in this work to address the difficulties encountered by Gardner [3] in his investigation of the DPLL output phase-jitter where additive noise to the input signal is combined with frequency quantization in the local oscillator. The model we use in our novel analysis of the system is also applicable to another of the cases looked at by Gardner, that is the DPLL with a delay element integrated in the loop. This gives us the opportunity to look at this system in more detail, our analysis providing some unique insights into the variance `dip' seen by Gardner in [3]. We initially provide background on the probability theory and stochastic processes. These branches of mathematics are the basis for the study of noisy analogue and digital PLLs. We give an overview of the classical analogue PLL theory as well as the background on both the digital PLL and circle map, referencing the model proposed by Teplinsky et al. [4, 5]. For our novel work, the case of the combined frequency quantization and noisy input from [3] is investigated first numerically, and then analytically as a Markov chain via its Chapman-Kolmogorov equation. The resulting delay equation for the steady-state jitter distribution is treated using two separate asymptotic analyses to obtain approximate solutions. It is shown how the variance obtained in each case matches well to the numerical results. Other properties of the output jitter, such as the mean, are also investigated. In this way, we arrive at a more complete understanding of the interaction between quantization and input noise in the first order DPLL than is possible using simulation alone. We also do an asymptotic analysis of a particular case of the noisy first-order DPLL with delay, previously investigated by Gardner [3]. We show a unique feature of the simulation results, namely the variance `dip' seen for certain levels of input noise, is explained by this analysis. Finally, we look at the second-order DPLL with additive noise, using numerical simulations to see the effects of low levels of noise on the limit cycles. We show how these effects are similar to those seen in the noise-free loop with non-zero initial conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

User Quality of Experience (QoE) is a subjective entity and difficult to measure. One important aspect of it, User Experience (UX), corresponds to the sensory and emotional state of a user. For a user interacting through a User Interface (UI), precise information on how they are using the UI can contribute to understanding their UX, and thereby understanding their QoE. As well as a user’s use of the UI such as clicking, scrolling, touching, or selecting, other real-time digital information about the user such as from smart phone sensors (e.g. accelerometer, light level) and physiological sensors (e.g. heart rate, ECG, EEG) could contribute to understanding UX. Baran is a framework that is designed to capture, record, manage and analyse the User Digital Imprint (UDI) which, is the data structure containing all user context information. Baran simplifies the process of collecting experimental information in Human and Computer Interaction (HCI) studies, by recording comprehensive real-time data for any UI experiment, and making the data available as a standard UDI data structure. This paper presents an overview of the Baran framework, and provides an example of its use to record user interaction and perform some basic analysis of the interaction.