4 resultados para Insects as carriers of plant disease
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
It has become clear that inflammation is beneficial to man, there are situations though that the inflammatory response causes damage to the host that is harmful to health. When the inflammatory response fails or is too strong, the health of the host is damaged and disease can occur. The implication of intestinal disease caused by an ineffective immune response is of great social and economic burden to society. The overarching purpose of this thesis is to assess inflammatory signalling targets associated with immune mediated disorders such as IBD, IBS and inflammatory liver disease. By assessing these targets and modifying their function I hope to contribute and expand further the pre-existing information on these disorders and improve the therapeutic interventions available in these debilitating conditions. I will assess the role of inflammation in disorders of the GI tract and liver IBD, IBS, hepatic inflammatory injury and furthermore, I will use pharmaceutical agents to activate and suppress components of the immune system. I will examine the inflammatory response in experimental models of disease for IBD and liver injury, I will attempt to alter these pathways using pharmaceutical intervention to delineate the disease causing mechanism that may lead to clinically relevant therapeutic interventions. In regards to IBS, I will attempt to improve the existing knowledge that exists in relation to the pathogenesis of this functional bowel disorder. I will attempt to define a mechanism by which the low grade mucosal inflammation that has been demonstrated by others arises and what this inflammation is induced by. The overall aim of this thesis is to attempt to further understand the mechanisms behind GI and liver disease. Looking at the inflammatory response in these specific conditions and how they can be altered may lead to exciting new therapies for inflammatory conditions in the gastrointestinal tract.
Resumo:
The primary focus of this thesis was the asymmetric peroxidation of α,β-unsaturated aldehydes and the development of this methodology to include the synthesis of bioactive chiral 1,2-dioxane and 1,2-dioxalane rings. In Chapter 1 a review detailing the new and improved methods for the acyclic introduction of peroxide functionality to substrates over the last decade was discussed. These include a detailed examination of metal-mediated transformations, chiral peroxidation using organocatalytic means and the improvements in methodology of well-established peroxidation pathways. The second chapter discusses the method by which peroxidation of our various substrates was attempted and the optimisation studies associated with these reactions. The method by which the enantioselectivity of our β-peroxyaldehydes was determined is also reviewed. Chapters 3 and 4 focus on improving the enantioselectivity associated with our asymmetric peroxidation reaction. A comprehensive analysis exploring the effect of solvent, concentration and temperature on enantioselectivity was examined. The effect that different catalytic systems have on enantioselectivity and reactivity was also investigated in depth. Chapter 5 details the various transformations that β-peroxyaldehydes can undergo and the manipulation of these transformations towards the establishment of several routes for the formation of chiral 1,2-dioxane and 1,2-dioxalane rings. Chapter 6 details the full experimental procedures, including spectroscopic and analytical data for the compounds prepared during this research.
Resumo:
Objective: To estimate the absolute treatment effect of statin therapy on major adverse cardiovascular events (MACE; myocardial infarction, stroke and vascular death) for the individual patient aged C70 years. Methods: Prediction models for MACE were derived in patients aged C70 years with (n = 2550) and without (n = 3253) vascular disease from the ‘‘PROspective Study of Pravastatin in Elderly at Risk’’ (PROSPER) trial and validated in the ‘‘Secondary Manifestations of ARTerial disease’’ (SMART) cohort study (n = 1442) and the ‘‘Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm’’ (ASCOT-LLA) trial (n = 1893), respectively, using competing risk analysis. Prespecified predictors were various clinical characteristics including statin treatment. Individual absolute risk reductions (ARRs) for MACE in 5 and 10 years were estimated by subtracting ontreatment from off-treatment risk. Results: Individual ARRs were higher in elderly patients with vascular disease [5-year ARRs: median 5.1 %, interquartile range (IQR) 4.0–6.2 %, 10-year ARRs: median 7.8 %, IQR 6.8–8.6 %] than in patients without vascular disease (5-year ARRs: median 1.7 %, IQR 1.3–2.1 %, 10-year ARRs: 2.9 %, IQR 2.3–3.6 %). Ninetyeight percent of patients with vascular disease had a 5-year ARR C2.0 %, compared to 31 % of patients without vascular disease. Conclusions: With a multivariable prediction model the absolute treatment effect of a statin on MACE for individual elderly patients with and without vascular disease can be quantified. Because of high ARRs, treating all patients is more beneficial than prediction-based treatment for secondary prevention of MACE. For primary prevention of MACE, the prediction model can be used to identify those patients who benefit meaningfully from statin therapy.
Resumo:
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterised by motor and non-motor symptoms, resulting from the degeneration of nigrostriatal dopaminergic neurons and peripheral autonomic neurons. Given the limited success of neurotrophic factors in clinical trials, there is a need to identify new small molecule drugs and drug targets to develop novel therapeutic strategies to protect all neurons that degenerate in PD. Epigenetic dysregulation has been implicated in neurodegenerative disorders, while targeting histone acetylation is a promising therapeutic avenue for PD. We and others have demonstrated that histone deacetylase inhibitors have neurotrophic effects in experimental models of PD. Activators of histone acetyltransferases (HAT) provide an alternative approach for the selective activation of gene expression, however little is known about the potential of HAT activators as drug therapies for PD. To explore this potential, the present study investigated the neurotrophic effects of CTPB (N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide), which is a potent small molecule activator of the histone acetyltransferase p300/CBP, in the SH-SY5Y neuronal cell line. We report that CTPB promoted the survival and neurite growth of the SH-SY5Y cells, and also protected these cells from cell death induced by the neurotoxin 6-hydroxydopamine. This study is the first to investigate the phenotypic effects of the HAT activator CTPB, and to demonstrate that p300/CBP HAT activation has neurotrophic effects in a cellular model of PD.