2 resultados para Informed-consent
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Background: Fractured neck of femur is a common cause of hospital admission in the elderly and usually requires operative fixation. In a variety of clinical settings, preoperative glucocorticoid administration has improved analgesia and decreased opioid consumption. Our objective was to define the postoperative analgesic efficacy of single dose of dexamethasone administered preoperatively in patients undergoing operative fixation of fractured neck of femur. Methods: Institutional ethical approval was granted and written informed consent was obtained from each patient. Patients awaiting for surgery at Cork University Hospital were recruited between July 2009 and August 2012. Participating patients, scheduled for surgery were randomly allocated to one of two groups (Dexamethasone or Placebo). Patients in the dexamethasone group received a single dose of intravenous dexamethasone 0.1 mg kg -1 immediately preoperatively. Patients in the placebo group received the same volume of normal saline. Patients underwent operative fixation of fractured neck of femur using standardised spinal anaesthesia and surgical techniques. The primary outcome was pain scores at rest 6 h after the surgery. Results: Thirty seven patients were recruited and data from thirty patients were analysed. The groups were similar in terms of patient characteristics. Pain scores at rest 6 h after the surgery (the principal outcome) were lesser in the dexamethasone group compared with the placebo group [0.8(1.3) vs. 3.9(2.9), mean(SD) p = 0.0004]. Cumulative morphine consumption 24 h after the surgery was also lesser in the dexamethasone group [7.7(8.3) vs. 15.1(9.4), mean(SD) mg, p = 0.04]. Conclusions: A single dose of intravenous dexamethasone 0.1 mg kg -1 administered before operative fixation of fractured neck of femur improve significantly the early postoperative analgesia. Trial registration: ClinicalTrials.gov identifier: NCT01550146, date of registration: 07/03/2012
Resumo:
Political drivers such as the Kyoto protocol, the EU Energy Performance of Buildings Directive and the Energy end use and Services Directive have been implemented in response to an identified need for a reduction in human related CO2 emissions. Buildings account for a significant portion of global CO2 emissions, approximately 25-30%, and it is widely acknowledged by industry and research organisations that they operate inefficiently. In parallel, unsatisfactory indoor environmental conditions have proven to negatively impact occupant productivity. Legislative drivers and client education are seen as the key motivating factors for an improvement in the holistic environmental and energy performance of a building. A symbiotic relationship exists between building indoor environmental conditions and building energy consumption. However traditional Building Management Systems and Energy Management Systems treat these separately. Conventional performance analysis compares building energy consumption with a previously recorded value or with the consumption of a similar building and does not recognise the fact that all buildings are unique. Therefore what is required is a new framework which incorporates performance comparison against a theoretical building specific ideal benchmark. Traditionally Energy Managers, who work at the operational level of organisations with respect to building performance, do not have access to ideal performance benchmark information and as a result cannot optimally operate buildings. This thesis systematically defines Holistic Environmental and Energy Management and specifies the Scenario Modelling Technique which in turn uses an ideal performance benchmark. The holistic technique uses quantified expressions of building performance and by doing so enables the profiled Energy Manager to visualise his actions and the downstream consequences of his actions in the context of overall building operation. The Ideal Building Framework facilitates the use of this technique by acting as a Building Life Cycle (BLC) data repository through which ideal building performance benchmarks are systematically structured and stored in parallel with actual performance data. The Ideal Building Framework utilises transformed data in the form of the Ideal Set of Performance Objectives and Metrics which are capable of defining the performance of any building at any stage of the BLC. It is proposed that the union of Scenario Models for an individual building would result in a building specific Combination of Performance Metrics which would in turn be stored in the BLC data repository. The Ideal Data Set underpins the Ideal Set of Performance Objectives and Metrics and is the set of measurements required to monitor the performance of the Ideal Building. A Model View describes the unique building specific data relevant to a particular project stakeholder. The energy management data and information exchange requirements that underlie a Model View implementation are detailed and incorporate traditional and proposed energy management. This thesis also specifies the Model View Methodology which complements the Ideal Building Framework. The developed Model View and Rule Set methodology process utilises stakeholder specific rule sets to define stakeholder pertinent environmental and energy performance data. This generic process further enables each stakeholder to define the resolution of data desired. For example, basic, intermediate or detailed. The Model View methodology is applicable for all project stakeholders, each requiring its own customised rule set. Two rule sets are defined in detail, the Energy Manager rule set and the LEED Accreditor rule set. This particular measurement generation process accompanied by defined View would filter and expedite data access for all stakeholders involved in building performance. Information presentation is critical for effective use of the data provided by the Ideal Building Framework and the Energy Management View definition. The specifications for a customised Information Delivery Tool account for the established profile of Energy Managers and best practice user interface design. Components of the developed tool could also be used by Facility Managers working at the tactical and strategic levels of organisations. Informed decision making is made possible through specified decision assistance processes which incorporate the Scenario Modelling and Benchmarking techniques, the Ideal Building Framework, the Energy Manager Model View, the Information Delivery Tool and the established profile of Energy Managers. The Model View and Rule Set Methodology is effectively demonstrated on an appropriate mixed use existing ‘green’ building, the Environmental Research Institute at University College Cork, using the Energy Management and LEED rule sets. Informed Decision Making is also demonstrated using a prototype scenario for the demonstration building.