4 resultados para Inflammatory cell
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Crohn’s disease (CD) is a chronic, relapsing inflammatory condition affecting the gastrointestinal tract of humans, of which there is currently no cure. The precise etiology of CD is unknown, although it has become widely accepted that it is a multifactorial disease which occurs as a result of an abnormal immune response to commensal enteric bacteria in a genetically susceptible host. Recent studies have shown that a new group of Escherichia coli, called Adherent Invasive Escherichia coli (AIEC) are present in the guts of CD patients at a higher frequency than in healthy subjects, suggesting that they may play a role in the initiation and/or maintenance of the inflammation associated with CD. Two phenotypes define an AIEC and differentiate them from other groups of E. coli. Firstly, AIEC can adhere to and invade epithelial cells; and secondly, they can replicate in macrophages. In this study, we use a strain of AIEC which has been isolated from the colonic mucosa of a CD patient, called HM605, to examine the relationship between AIEC and the macrophage. We show, using a systematic mutational approach, that while the Tricarboxylic acid (TCA) cycle, the glyoxylate pathway, the Entner-Doudoroff (ED) pathway, the Pentose Phosphate (PP) pathway and gluconeogenesis are dispensable for the intramacrophagic growth of HM605, glycolysis is an absolute requirement for the ability of this organism to replicate intracellularly. We also show that HM605 activates the inflammasome, a major driver of inflammation in mammals. Specifically, we show that macrophages infected with HM605 produce significantly higher levels of the pro-inflammatory cytokine IL-1β than macrophages infected with a non-AIEC strain, and we show by immunoblotting that this is due to cleavage of caspase-1. We also show that macrophages infected with HM605 exhibit significantly higher levels of pyroptosis, a form of inflammatory cell death, than macrophages infected with a non-AIEC strain. Therefore, AIEC strains are more pro-inflammatory than non-AIEC strains and this may have important consequences in terms of CD pathology. Moreover, we show that while inflammasome activation by HM605 is independent of intracellular bacterial replication, it is dependent on an active bacterial metabolism. Through the establishment of a genetic screen aimed at identifying mutants which activate the inflammasome to lower levels than the wild-type, we confirm our observation that bacterial metabolism is essential for successful inflammasome activation by HM605 and we also uncover new systems/structures that may be important for inflammasome activation, such as the BasS/BasR two-component system, a type VI secretion system and a K1 capsule. Finally, in this study, we also identify a putative small RNA in AIEC strain LF82, which may be involved in modulating the motility of this strain. Overall this works shows that, in the absence of specialised virulence factors, the ability of AIEC to metabolise within the host cell may be a key determinant of its pathogenesis.
Resumo:
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by the loss of midbrain dopaminergic neurons from the substantia nigra pars compacta(SNpc), which results in motor, cognitive and psychiatric symptoms. Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Inflammation may also be associated with the neuropathology of PD due to evidence of increased levels of proinflammatory cytokines such as interleukin-1β (IL-1β) within the SNpc. Because of the specific loss of dopaminergic neurons in a discreet region of the brain, PD is considered a suitable candidate for cell replacement therapy but challenges remain to optimise dopaminergic cell survival and morphological development. The present thesis examined the role of MKP-1 in neurotoxic and inflammatory-induced changes in the development of midbrain dopaminergic neurons. We show that MKP-1 is expressed in dopaminergic neurons cultured from embryonic day (E) 14 rat ventral mesencephalon (VM). Inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6- hydroxydopamine (6-OHDA) is mediated by p38, and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. Dopaminergic neurons transfected to overexpress MKP-1 displayed a more complex morphology and contributed to neuroprotection against the effects of 6-OHDA. Therefore, MKP-1 expression can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Neural precursor cells (NPCs) have emerged as promising alternative candidates to fetal VM for cell replacement strategies in PD. Here we show that phosphorylated (and thus activated) p38 and MKP-1 are expressed at basal levels in untreated E14 rat VM NPCs (nestin, DCX, GFAP and DAT-positive cells) following proliferation as well as in their differentiated progeny (DCX, DAT, GFAP and βIII-tubulin) in vitro. Challenge with 6-OHDA or IL-1β changed the expression of endogenous phospho-p38 and MKP-1 in these cells in a time-dependent manner, and so the dynamic balance in expression may mediate the detrimental effects of neurotoxicity and inflammation in proliferating and differentiating NPCs. We demonstrate that there was an up-regulation in MKP-1 mRNA expression in adult rat midbrain tissue 4 days post lesion in two rat models of PD; the 6-OHDA medial forebrain bundle (MFB) model and the four-site 6-OHDA striatal lesion model. This was concomitant with a decrease in tyrosine hydroxylase (TH) mRNA expression at 4 and 10 days post-lesion in the MFB model and 10 and 28 days post-lesion in the striatal lesion model. There was no change in mRNA expression of the pro-apoptotic gene, bax and the anti-apoptotic gene, bcl-2 in the midbrain and striatum. These data suggest that the early and transient upregulation of MKP-1 mRNA in the midbrain at 4 days post-6-OHDA administration may be indicative of an attempt by dopaminergic neurons in the midbrain to protect against the neurotoxic effects of 6-OHDA at later time points. Collectively, these findings show that MKP-1 is expressed by developing and adult dopaminergic neurons in the midbrain, and can promote their morphological development. MKP-1 also exerts neuroprotective effects against dopaminergic neurotoxins in vitro, and its expression in dopaminergic neurons can be modulated by inflammatory and neurotoxic insults both in vitro and in vivo. Thus, these data contribute to the information needed to develop therapeutic strategies for protecting midbrain dopaminergic neurons in the context of PD.
Resumo:
Functional food ingredients, with scientifically proven and validated bioactive effects, present an effective means of inferring physiological health benefits to consumers to reduce the risk of certain diseases. The search for novel bioactive compounds for incorporation into functional foods is particularly active, with brewers’ spent grain (BSG, a brewing industry co-product) representing a unique source of potentially bioactive compounds. The DNA protective, antioxidant and immunomodulatory effects of phenolic extracts from both pale (P1 - P4) and black (B1 – B4) BSG were examined. Black BSG extracts significantly (P < 0.05) protected against DNA damage induced by hydrogen peroxide (H2O2) and extracts with the highest total phenolic content (TPC) protected against 3-morpholinosydnonimine hydrochloride (SIN-1)-induced oxidative DNA damage, measured by the comet assay. Cellular antioxidant activity assays were used to measured antioxidant potential in the U937 cell line. Extracts P1 – P3 and B2 - B4 demonstrated significant (P < 0.05) antioxidant activity, measured by the superoxide dismutase (SOD) activity, catalase (CAT) activity and gluatathione (GSH) content assays. Phenolic extracts P2 and P3 from pale BSG possess anti-inflammatory activity measured in concanavalin-A (conA) stimulated Jurkat T cells by an enzyme-linked immunosorbent assay (ELISA); significantly (P < 0.05) reducing production of interleukin-2 (IL-2), interleukin-4 (IL-4, P2 only), interleukin-10 (IL-10) and interferon-γ (IFN-γ). Black BSG phenolic extracts did not exhibit anti-inflammatory effects in vitro. Hydroxycinnamic acids (HA) have previously been shown to be the phenolic acids present at highest concentration in BSG; therefore the HA profile of the phenolic extracts used in this research, the original barley (before brewing) and whole BSG was characterised and quantified using high performance liquid chromatography (HPLC). The concentration of HA present in the samples was in the order of ferulic acid (FA) > p-coumaric acid (p-CA) derivatives > FA derivatives > p-CA > caffeic acid (CA) > CA derivatives. Results suggested that brewing and roasting decreased the HA content. Protein hydrolysates from BSG were also screened for their antioxidant and anti-inflammatory potential. A total of 34 BSG protein samples were tested. Initial analyses of samples A – J found the protein samples did not exert DNA protective effects (except hydrolysate H) or antioxidant effects by the comet and SOD assays, respectively. Samples D, E, F and J selectively reduced IFN-γ production (P < 0.05) in Jurkat T cells, measured using enzyme linked immunosorbent assay (ELISA). Further testing of hydrolysates K – W, including fractionated hydrolysates with molecular weight < 3, < 5 and > 5 kDa, found that higher molecular weight (> 5 kDa) and unfractionated hydrolysates demonstrate greatest anti-inflammatory effects, while fractionated hydrolysates were also shown to have antioxidant activity, by the SOD activity assay. A commercially available yogurt drink (Actimel) and snack-bar and chocolate-drink formulations were fortified with the most bioactive phenolic and protein samples – P2, B2, W, W < 3 kDa, W < 5 kDa, W > 5 kDa. All fortified foods were subjected to a simulated gastrointestinal in vitro digestion procedure and bioactivity retention in the digestates was determined using the comet and ELISA assays. Yogurt fortified with B2 digestate significantly (P < 0.05) protected against H2O2-induced DNA damage in Caco-2 cells. Greatest immunomodulatory activity was demonstrated by the snack-bar formulation, significantly (P < 0.05) reducing IFN-γ production in con-A stimulated Jurkat T cells. Hydrolysate W significantly (P < 0.05) increased the IFN-γ reducing capacity of the snack-bar. Addition of fractionated hydrolysate W < 3 kDa and W < 5 kDa to yogurt also reduced IL-2 production to a greater extent than the unfortified yogurt (P < 0.05).
Resumo:
Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute "cell motility" category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the beta- and gamma-proteobacteria. Many fliC genes were deduced to be under the control of sigma(28). The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13-4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (<= 1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved metagenome assembly from short reads will be required to facilitate in silico analyses of complete complex biochemical pathways for low-abundance target species from shotgun metagenomes.