2 resultados para Industrial chemistry
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada’s CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability to better understand the chemical nature of atypical factors from high resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably re-solved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra.
Resumo:
The composition of atmospheric particles is an important factor in determining their impact on climate and health. In this study, an aerosol time-of-flight mass spectrometer (ATOFMS) was used to measure the chemical composition of ambient single particles at two contrasting locations – an industrial site in Dunkirk, France and a regional background site in Corsica. The ATOFMS data were combined with meteorological information and other particle measurements to determine the various sources of the particles observed at the sites. The particle classes detected in Dunkirk included carbonaceous species from fossil fuel combustion and biomass burning, metal-containing types from local industries and seasalt. Highest particle number concentrations and mass concentrations of PM2.5, black carbon, organics, nitrate, ammonium and several metallic species (Fe, Mn, Pb, Zn) were found during periods heavily influenced by local industry. Particles from a ferromanganese alloy manufacturing facility were identified by comparing ambient ATOFMS data with single particle mass spectra from industrial chimney filters and ores. Particles from a steelworks were identified based on comparison of the ambient data with previous studies. Based on these comparisons, the steelworks was identified as the dominant emitter of Fe-rich particles, while the ferromanganese alloy facility emitted Mn-rich particles. In Corsica, regional transport of carbonaceous particles from biomass burning and fossil fuel combustion was identified as the major source of particles in the Mediterranean background aerosol. Throughout the campaign the site was influenced by air masses altering the composition of particles detected. During North Atlantic air masses the site was heavily influenced by fresh sea salt. Regional stagnation was the most common type of air mass regime throughout the campaign and resulted in the accumulation of carbonaceous particles during certain periods. Mass concentrations were estimated for ATOFMS particle classes, and good agreement was found between the major carbonaceous classes and other quantitative measurements. Overall the results of this work serve to highlight the excellent ability of the ATOFMS technique in providing source-specific composition and mixing state information on atmospheric particles at high time resolution.