3 resultados para INTEGRATING DIRECT-METHODS
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The abundance of many commercially important fish stocks are declining and this has led to widespread concern on the performance of traditional approach in fisheries management. Quantitative models are used for obtaining estimates of population abundance and the management advice is based on annual harvest levels (TAC), where only a certain amount of catch is allowed from specific fish stocks. However, these models are data intensive and less useful when stocks have limited historical information. This study examined whether empirical stock indicators can be used to manage fisheries. The relationship between indicators and the underlying stock abundance is not direct and hence can be affected by disturbances that may account for both transient and persistent effects. Methods from Statistical Process Control (SPC) theory such as the Cumulative Sum (CUSUM) control charts are useful in classifying these effects and hence they can be used to trigger management response only when a significant impact occurs to the stock biomass. This thesis explores how empirical indicators along with CUSUM can be used for monitoring, assessment and management of fish stocks. I begin my thesis by exploring various age based catch indicators, to identify those which are potentially useful in tracking the state of fish stocks. The sensitivity and response of these indicators towards changes in Spawning Stock Biomass (SSB) showed that indicators based on age groups that are fully selected to the fishing gear or Large Fish Indicators (LFIs) are most useful and robust across the range of scenarios considered. The Decision-Interval (DI-CUSUM) and Self-Starting (SS-CUSUM) forms are the two types of control charts used in this study. In contrast to the DI-CUSUM, the SS-CUSUM can be initiated without specifying a target reference point (‘control mean’) to detect out-of-control (significant impact) situations. The sensitivity and specificity of SS-CUSUM showed that the performances are robust when LFIs are used. Once an out-of-control situation is detected, the next step is to determine how much shift has occurred in the underlying stock biomass. If an estimate of this shift is available, they can be used to update TAC by incorporation into Harvest Control Rules (HCRs). Various methods from Engineering Process Control (EPC) theory were tested to determine which method can measure the shift size in stock biomass with the highest accuracy. Results showed that methods based on Grubb’s harmonic rule gave reliable shift size estimates. The accuracy of these estimates can be improved by monitoring a combined indicator metric of stock-recruitment and LFI because this may account for impacts independent of fishing. The procedure of integrating both SPC and EPC is known as Statistical Process Adjustment (SPA). A HCR based on SPA was designed for DI-CUSUM and the scheme was successful in bringing out-of-control fish stocks back to its in-control state. The HCR was also tested using SS-CUSUM in the context of data poor fish stocks. Results showed that the scheme will be useful for sustaining the initial in-control state of the fish stock until more observations become available for quantitative assessments.
Resumo:
Background: The management of childhood obesity is challenging. Aims: Thesis, i) reviews the evidence for lifestyle treatment of obesity, ii) explores cardiometabolic burden in childhood obesity, iii) explores whether changes in body composition predicts change in insulin sensitivity (IS), iv) develops and evaluates a lifestyle obesity intervention; v) develops a mobile health application for obesity treatment and vi) tests the application in a clinical trial. Methods: In Study 1, systematic reviews and meta-analyses of the 12‐month effects of lifestyle and mHealth interventions were conducted. In Study 2, the prevalence of cardiometabolic burden was estimated in a consecutive series of 267 children. In Study 3, body composition was estimated with bioelectrical impedance analysis (BIA) and dual x-ray absorptiometry (DXA) and linear regression analyses were used to estimate the extent to which each methods predicted change in IS. Study 4 describes the development of the Temple Street W82GO Healthy Lifestyle intervention for clinical obesity in children and a controlled study of treatment effect in 276 children is reported. Study 5 describes the development and testing of the Reactivate Mobile Obesity Application. Study 6 outlines the development and preliminary report from a clinical effectiveness trial of Reactivate. Results: In Study 1, meta--‐analyses BMI SDS changed by -0.16 (-0.24,‐0.07, p<0.01) and -0.03 (-0.13, 0.06, p=0.48). In study 2, cardiometabolic comorbidities were common (e.g. hypertension in 49%) and prevalence increased as obesity level increased. In Study 3, BC changes significantly predicted changes in IS. In Study 4, BMI SDS was significantly reduced in W82GO compared to controls (p<0.001). In Study 5, the Reactivate application had good usability indices and preliminary 6‐month process report data from Study 6, revealed a promising effect for Reactivate. Conclusions: W82GO and Reactivate are promising forms of treatment.
Resumo:
Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic sensing capsules are an example of these. In none of the diagnostic sensing capsules, is the sensor’s first level packaging achieved via Flip Chip Over Hole (FCOH) method using Anisotropic Conductive Adhesive (ACA). In a capsule application with direct access sensor (DAS), ACA not only provides the electrical interconnection but simultaneously seals the interconnect area and the underlying electronics. The development showed that the ACA FCOH was a viable option for the DAS interconnection. Adequate adhesive formed a strong joint that withstood a shear stress of 120N/mm2 and a compressive stress of 6N required to secure the final sensor assembly in place before encapsulation. Electrical characterization of the ACA joint in a fluid environment showed that the ACA was saturated with moisture and that the ions in the solution actively contributed to the leakage current, characterized by the varying rate of change of conductance. Long term hygrothermal aging of the ACA joint showed that a thermal strain of 0.004 and a hygroscopic strain of 0.0052 were present and resulted in a fatigue like process. In-vitro tests showed that high temperature and acidity had a deleterious effect of the ACA and its joint. It also showed that the ACA contact joints positioned at around or over 1mm would survive the gastrointestinal (GI) fluids and would be able to provide a reliable contact during the entire 72hr of the GI transit time. A final capsule demonstrator was achieved by successfully integrating the DAS, the battery and the final foldable circuitry into a glycerine capsule. Final capsule soak tests suggested that the silicone encapsulated system could survive the 72hr gut transition.