4 resultados para INFLAMMATORY-BOWEL-DISEASE
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Patient awareness and concern regarding the potential health risks from ionizing radiation have peaked recently (Coakley et al., 2011) following widespread press and media coverage of the projected cancer risks from the increasing use of computed tomography (CT) (Berrington et al., 2007). The typical young and educated patient with inflammatory bowel disease (IBD) may in particular be conscious of his/her exposure to ionising radiation as a result of diagnostic imaging. Cumulative effective doses (CEDs) in patients with IBD have been reported as being high and are rising, primarily due to the more widespread and repeated use of CT (Desmond et al., 2008). Radiologists, technologists, and referring physicians have a responsibility to firstly counsel their patients accurately regarding the actual risks of ionizing radiation exposure; secondly to limit the use of those imaging modalities which involve ionising radiation to clinical situations where they are likely to change management; thirdly to ensure that a diagnostic quality imaging examination is acquired with lowest possible radiation exposure. In this paper, we synopsize available evidence related to radiation exposure and risk and we report advances in low-dose CT technology and examine the role for alternative imaging modalities such as ultrasonography or magnetic resonance imaging which avoid radiation exposure.
Resumo:
In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.
Resumo:
Inflammatory bowel disease (IBD) is a chronic inflammation which affects the gastrointestinal tract (GIT). One of the best ways to study the immunological mechanisms involved during the disease is the T cell transfer model of colitis. In this model, immunodeficient mice (RAG-/-recipients) are reconstituted with naive CD4+ T cells from healthy wild type hosts. This model allows examination of the earliest immunological events leading to disease and chronic inflammation, when the gut inflammation perpetuates but does not depend on a defined antigen. To study the potential role of antigen presenting cells (APCs) in the disease process, it is helpful to have an antigen-driven disease model, in which a defined commensal-derived antigen leads to colitis. An antigen driven-colitis model has hence been developed. In this model OT-II CD4+ T cells, that can recognize only specific epitopes in the OVA protein, are transferred into RAG-/- hosts challenged with CFP-OVA-expressing E. coli. This model allows the examination of interactions between APCs and T cells in the lamina propria.
Resumo:
In the present study, we aimed to examine the impact of cardiopulmonary bypass (CPB) on expression and function of NOD1 and NOD2 in children with congenital heart disease (CHD), in an attempt to clarify whether NOD1 and NOD2 signaling is involved in the modulation of host innate immunity against postoperative infection in pediatric CHD patients. Peripheral blood samples were collected from pediatric CHD patients at five different time points: before CPB, immediately after CPB, and 1, 3, and 7 days after CPB. Real-time PCR, Western blot, and ELISA were performed to measure the expression of NOD1 and NOD2, their downstream signaling pathways, and inflammatory cytokines at various time points. Proinflammatorycytokine IL-6 and TNF-α levels in response to stimulation with either the NOD1 agonist Tri-DAP or the NOD2 agonist MDP were significantly reduced after CPB compared with those before CPB, which is consistent with a suppressed inflammatory response postoperatively. The expression of phosphorylated RIP2 and activation of the downstream signaling pathways NF-κB p65 and MAPK p38 upon Tri-DAP or MDP stimulation in PBMCs were substantially inhibited after CPB. The mRNA level of NOD1 and protein levels of NOD1 and NOD2 were also markedly decreased after CPB. Our results demonstrated that NOD-mediated signaling pathways were substantially inhibited after CPB, which correlates with the suppressed inflammatory response and may account, at least in part, for the increased risk of postoperative infection in pediatric CHD patients.