3 resultados para INCREASING LEVELS
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The central research question that this thesis addresses is whether there is a significant gap between fishery stakeholder values and the principles and policy goals implicit in an Ecosystem Approach to Fisheries Management (EAFM). The implications of such a gap for fisheries governance are explored. Furthermore an assessment is made of what may be practically achievable in the implementation of an EAFM in fisheries in general and in a case study fishery in particular. The research was mainly focused on a particular case study, the Celtic Sea Herring fishery and its management committee, the Celtic Sea Herring Management Advisory Committee (CSHMAC). The Celtic Sea Herring fishery exhibits many aspects of an EAFM and the fish stock has successfully recovered to healthy levels in the past 5 years. However there are increasing levels of governance related conflict within the fishery which threaten the future sustainability of the stock. Previous research on EAFM governance has tended to focus either on higher levels of EAFM governance or on individual behaviour but very little research has attempted to link the two spheres or explore the relationship between them. Two main themes within this study aimed to address this gap. The first was what role governance could play in facilitating EAFM implementation. The second theme concerned the degree of convergence between high-level EAFM goals and stakeholder values. The first method applied was governance benchmarking to analyse systemic risks to EAFM implementation. This found that there are no real EU or national level policies which provide stakeholders or managers with clear targets for EAFM implementation. The second method applied was the use of cognitive mapping to explore stakeholders understandings of the main ecological, economic and institutional driving forces in the Celtic Sea Herring fishery. The main finding from this was that a long-term outlook can and has been incentivised through a combination of policy drivers and participatory management. However the fundamental principle of EAFM, accounting for ecosystem linkages rather than target stocks was not reflected in stakeholders cognitive maps. This was confirmed in a prioritisation of stakeholders management priorities using Analytic Hierarchy Process which found that the overriding concern is for protection of target stock status but that wider ecosystem health was not a priority for most management participants. The conclusion reached is that moving to sustainable fisheries may be a more complex process than envisioned in much of the literature and may consist of two phases. The first phase is a transition to a long-term but still target stock focused approach. This achievable transition is mainly a strategic change, which can be incentivised by policies and supported by stakeholders. In the Celtic Sea Herring fishery, and an increasing number of global and European fisheries, such transitions have contributed to successful stock recoveries. The second phase however, implementation of an ecosystem approach, may present a greater challenge in terms of governability, as this research highlights some fundamental conflicts between stakeholder perceptions and values and those inherent in an EAFM. This phase may involve the setting aside of fish for non-valued ecosystem elements and will require either a pronounced mind-set and value change or some strong top-down policy incentives in order to succeed. Fisheries governance frameworks will need to carefully explore the most effective balance between such endogenous and exogenous solutions. This finding of low prioritisation of wider ecosystem elements has implications for rights based management within an ecosystem approach, regardless of whether those rights are individual or collective.
Resumo:
A bacteriocin-producing strain of Lactobacillus paracasei DPC 4715 was used as an adjunct culture in Cheddar cheese in order to control the growth of “wild” nonstarter lactic acid bacteria. No suppression of growth of the indicator strain was observed in the experimental cheese. The bacteriocin produced by Lactobacillus paracasei DPC 4715 was sensitive to chymosin and cathepsin D and it may have been cleaved by the rennet used for the cheese manufactured or by indigenous milk proteases. A series of studies were performed using various microbial adjuncts to influence cheese ripening. Microbacterium casei DPC 5281, Corynebacterium casei DPC 5293 and Corynebacterium variabile DPC 5305 were added to the cheesemilk at level of 109 cfu/ml resulting in a final concentration of 108 cfu/g in Cheddar cheese. The strains significantly increased the level of pH 4.6-soluble nitrogen, total free amino acids after 60 and 180 d of ripening and some individual free amino acids after 180 d. Yarrowia lipolytica DPC 6266, Yarrowia lipolytica DPC 6268 and Candida intermedia DPC 6271 were used to accelerate the ripening of Cheddar cheese. Strains were grown in YG broth to a final concentration of 107 cfu/ml, microfluidized, freeze-dried and added to the curd during salting at level of 2% w/w. The yeasts positively affected the primary, secondary proteolysis and lipolysis of cheeses and had aminopeptidase, dipeptidase, esterase and 5’ phosphodiestere activities that contributed to accelerate the ripening and improve the flavor of cheese. Hafia alvei was added to Cheddar cheesemilk at levels of 107 cfu/ml and 108 cfu/ml and its contribution during ripening was evaluated. The strain significantly increased the level of pH 4.6-soluble nitrogen, total free amino-acids, and some individual free amino-acids of Cheddar cheese, whereas no differences in the urea-polyacrylamide gel electrophoresis (urea-PAGE) electrophoretograms of the cheeses were detected. Hafia alvei also significantly increased the level of some biogenic amines. A low-fat Cheddar cheese was made with Bifidobacterium animalis subsp. lactis, strain BB-12® at level of 108 cfu/ml, as a probiotic adjunct culture and Hi-Maize® 260 (resistant high amylose maize starch) at level of 2% and 4% w/v, as a prebiotic fiber which also played the role of fat replacer. Bifidobacterium BB-12 decreased by 1 log cycle after 60 d of ripening and remained steady at level of ~107 cfu/g during ripening. The Young’s modulus also increased proportionally with increasing levels of Hi-maize. Hencky strain at fracture decreased over ripening and increased with increasing in fat replacer. A cheese based medium (CBM) was developed with the purpose of mimicking the cheese environment at an early ripening stage. The strains grown in CBM showed aminopeptidase activity against Gly-, Arg-, Pro- and Phe-p-nitroanalide, whereas, when grown in MRS they were active against all the substrates tested. Both Lb. danicus strains grown in MRS and in CBM had aminotransferase activity towards aromatic amino acids (Phe and Trp) and also branched-chain amino acids (Leu and Val). Esterase activity was expressed against p-nitrophenyl-acetate (C2), pnitrophenyl- butyrate (C4) and p-nitrophenyl-palmitate (C16) and was significantly higher in CBM than in MRS.
Resumo:
There are numerous review papers discussing liquid nanoemulsions and how they compare to other emulsion systems. Little research is available on dried nanoemulsions. The objectives of this research were to (i) study the effect of varying the continuous phase of nanoemulsions with different carbohydrate/protein ratios on subsequent emulsion stability, and (ii) compare the physicochemical properties, lactose crystallisation properties, microstructure, and lipid oxidation of spray dried nanoemulsions compared to spray dried conventional emulsions having different water and sugar contents. Nanoemulsions containing sunflower oil (10% w/w), β-casein (2.5–10% w/w) and lactose or trehalose (10–17.5%) were produced following optimisation of the continuous phase by maximising and minimising viscosity and glass transition temperature (Tg’) using mixture design software. Increasing levels of β-casein from caused a significant increase in viscosity, particle size, and nanoemulsion stability, while resulting in a decrease in Tg’. Powders were made from spray drying emulsions/nanoemulsions consisting of lactose or a 70:30 mixture of lactose:sucrose (23.9%), sodium caseinate (5.1%) and sunflower oil (11.5%) in water. Nanoemulsions, produced by microfluidisation (100 MPa), had higher stability and lower viscosity than control emulsions (homogenization at 17 MPa) with lower solvent extractable free fat in the resulting powder. Partial replacement of lactose with sucrose decreased Tg and delayed Tcr. DVS and PLM showed that in powdered nanoemulsions, lactose crystallises faster than in powdered conventional emulsions. Microstructure of both powders (CLSM and cryo-SEM) showed different FGS in powders and different structure post lactose crystallisation. Powdered nanoemulsions had lower pentanal and hexanal (indicators of lipid oxidation) after 24 months storage due to their lower free fat and porosity, measured using a validated GC HS-SPME method, This research has shown the effect of altering the continuous phase of nanoemulsions on microstructure of spray dried nanoemulsions, which affects physical properties, sugar crystallisation, and lipid oxidation.