8 resultados para IL-1 BETA

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of γ-secretase protease activities in development, neurogenesis and the immune system are highlighted by the diversity of its substrates and phenotypic characterization of Presenilin (PS)-deficient transgenic animals. Since the discovery of Amyloid precursor protein (APP) and it’s cleavage by γ-secretase complexes, over 90 other type I membrane proteins have been identified as γ-secretase substrates. We have identified interleukin-1 (IL-1) receptor type I (IL-1R1), toll-like receptor 4 (TLR4) and tumour necrosis factor-α (TNFα) receptor-1 (TNFR1) as novel substrates for - secretase cleavage, which play an important role in innate immunity. In this study, using PS-deficient cells and PS-knockout animal models we examined the role of PS proteins, PS1 and PS2, in IL-1R1-, TLR4- and TNFR1- mediated inflammatory responses. Data presented show that in response to IL- 1β, lipopolysaccharide (LPS) or TNFα, immortalised fibroblasts from PS2- deficient animals have diminished production of specific cytokines and chemokine, with differential reduction in nuclear factor-κB (NF-κB) and (mitogen activated protein kinase) MAPK activities. In contrast, no defect in the response to IL-1β, LPS or TNFα was observed in PS1-deficient immortalised fibroblasts. These observations were confirmed using bone marrow-derived macrophages from PS2-null mice, which also display impaired responsiveness to IL-1β- and LPS, with decreased production of inflammatory cytokines. Furthermore, in whole animal in vivo responses, we show that PS2-deficient animals display ligand (IL-1β, LPS and TNFα)-dependent alterations in the production of specific pro-inflammatory cytokines or chemokines. Importantly, this reduced responsiveness to IL-1β, LPS or TNFα is independent of γ- secretase protease activity and γ-secretase cleavage of TNFR1, IL-1R1 or TLR4. These observations suggest a novel γ-secretase-independent role of PS2 in the regulation of innate immune responsiveness and challenge current concepts regarding the regulation of IL-1β-, LPS- and TNFα-mediated immune signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurogenesis occurs in two distinct regions of the adult brain; the subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the subventricular zone (SVZ) lining the lateral ventricles. It is now well-known that adult hippocampal neurogenesis can be modulated by a number of intrinsic and extrinsic factors e.g. local signalling molecules, exercise, environmental enrichment and learning. Moreover, levels of adult hippocampal neurogenesis decrease with age, at least in rodents, and alterations in hippocampal neurogenesis have been reported in animal models and human studies of neuropsychiatric and neurodegenerative conditions. Neuroinflammation is a common pathological feature of these conditions and is also a potent modulator of adult hippocampal neurogenesis. Recently, the orphan nuclear receptor TLX has been identified as an important regulator of adult hippocampal neurogenesis as its expression is necessary to maintain the neural precursor cell (NPC) pool in the adult DG. Likewise, exposure of animals to voluntary exercise has been consistently demonstrated to promote adult hippocampal neurogenesis. Lentivirus (LV)- mediated gene transfer is a useful tool to elucidate gene function and to explore potential therapeutic candidates across an array of conditions as it facilitates sustained gene expression in both dividing and post-mitotic cell populations. Both intrinsic and extrinsic factors are important regulators of adult hippocampal neurogenesis. Examining how these factors are affected by an inflammatory stimulus, and the subsequent effects on adult hippocampal neurogenesis provides important information for the development of novel treatment strategies for neuropsychiatric and neurodegenerative conditions in which adult hippocampal neurogenesis is impaired. The aims of the series of experiments presented in this thesis were to examine the effect of the pro-inflammatory cytokine interleukin-1β (IL-1β) on adult hippocampal NPCs both in vitro and in vivo. In vitro, we have shown that IL-1β reduces proliferation of adult hippocampal NPCs in a dose and time-dependent manner. In addition, we have demonstrated that TLX expression is reduced by IL-1β. Blockade of IL-1β signalling prevented both the IL-1β-induced reduction in cell proliferation and TLX expression. In vivo, we examined the effect of short term and long term exposure to LV-IL-1β in sedentary mice and in mice exposed to voluntary running. We demonstrated that impaired hippocampal neurogenesis is only evident after long term exposure to IL-1β. In mice exposed to voluntary running, hippocampal neurogenesis is significantly increased following short-term but not long-term exposure to running. Moreover, short-term running effectively prevents any IL-1β-induced effects on hippocampal neurogenesis; however, no such effects are seen following long-term exposure to running.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by the loss of midbrain dopaminergic neurons from the substantia nigra pars compacta(SNpc), which results in motor, cognitive and psychiatric symptoms. Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Inflammation may also be associated with the neuropathology of PD due to evidence of increased levels of proinflammatory cytokines such as interleukin-1β (IL-1β) within the SNpc. Because of the specific loss of dopaminergic neurons in a discreet region of the brain, PD is considered a suitable candidate for cell replacement therapy but challenges remain to optimise dopaminergic cell survival and morphological development. The present thesis examined the role of MKP-1 in neurotoxic and inflammatory-induced changes in the development of midbrain dopaminergic neurons. We show that MKP-1 is expressed in dopaminergic neurons cultured from embryonic day (E) 14 rat ventral mesencephalon (VM). Inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6- hydroxydopamine (6-OHDA) is mediated by p38, and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. Dopaminergic neurons transfected to overexpress MKP-1 displayed a more complex morphology and contributed to neuroprotection against the effects of 6-OHDA. Therefore, MKP-1 expression can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Neural precursor cells (NPCs) have emerged as promising alternative candidates to fetal VM for cell replacement strategies in PD. Here we show that phosphorylated (and thus activated) p38 and MKP-1 are expressed at basal levels in untreated E14 rat VM NPCs (nestin, DCX, GFAP and DAT-positive cells) following proliferation as well as in their differentiated progeny (DCX, DAT, GFAP and βIII-tubulin) in vitro. Challenge with 6-OHDA or IL-1β changed the expression of endogenous phospho-p38 and MKP-1 in these cells in a time-dependent manner, and so the dynamic balance in expression may mediate the detrimental effects of neurotoxicity and inflammation in proliferating and differentiating NPCs. We demonstrate that there was an up-regulation in MKP-1 mRNA expression in adult rat midbrain tissue 4 days post lesion in two rat models of PD; the 6-OHDA medial forebrain bundle (MFB) model and the four-site 6-OHDA striatal lesion model. This was concomitant with a decrease in tyrosine hydroxylase (TH) mRNA expression at 4 and 10 days post-lesion in the MFB model and 10 and 28 days post-lesion in the striatal lesion model. There was no change in mRNA expression of the pro-apoptotic gene, bax and the anti-apoptotic gene, bcl-2 in the midbrain and striatum. These data suggest that the early and transient upregulation of MKP-1 mRNA in the midbrain at 4 days post-6-OHDA administration may be indicative of an attempt by dopaminergic neurons in the midbrain to protect against the neurotoxic effects of 6-OHDA at later time points. Collectively, these findings show that MKP-1 is expressed by developing and adult dopaminergic neurons in the midbrain, and can promote their morphological development. MKP-1 also exerts neuroprotective effects against dopaminergic neurotoxins in vitro, and its expression in dopaminergic neurons can be modulated by inflammatory and neurotoxic insults both in vitro and in vivo. Thus, these data contribute to the information needed to develop therapeutic strategies for protecting midbrain dopaminergic neurons in the context of PD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, extensive research has been carried out on the health benefits of milk proteins and peptides. Biologically active peptides are defined as specific protein fragments which have a positive impact on the physiological functions of the body; such peptides are produced naturally in vivo, but can also be generated by physical and/or chemical processes, enzymatic hydrolysis and/or microbial fermentation. The aims of this thesis were to investigate not only the traditional methods used for the generation of bioactive peptides, but also novel processes such as heat treatment, and the role of indigenous milk proteases, e.g., in mastitic milk, in the production of such peptides. In addition, colostrum was characterised as a source of bioactive proteins and peptides. Firstly, a comprehensive study was carried out on the composition and physical properties of colostrum throughout the early-lactation period. Marked differences in the physico-chemical properties of colostrum compared with milk were observed. Various fractions of colostrum were also tested for their effect on the secretion of pro- and anti-inflammatory cytokines from a macrophage cell line and bone marrow dendritic cells, as well as insulin secretion from a pancreatic beta cell line. A significant reduction in the secretion of the pro-inflammatory cytokines, TNF-α, IL-6, IL-1β and IL-12, a significant increase in the secretion of the anti-inflammatory cytokine, IL-10, as well as a significant increase in insulin secretion were observed for various colostrum fractions. Another study examined the early proteomic changes in the milk of 8 cows in response to infusion with the endotoxin lipopolysaccharide (LPS) at quarter level in a model mastitic system; marked differences in the protein and peptide profile of milk from LPS challenged cows were observed, and a pH 4.6-soluble fraction of this milk was found to cause a substantial induction in the secretion of IL-10 from a murine macrophage cell line. Heat-induced hydrolysis of sodium caseinate was investigated from the dual viewpoints of protein breakdown and peptide formation, and, a peptide fraction produced in this manner was found to cause a significant increase in the secretion of the anti-inflammatory cytokine, IL-10, from a murine macrophage cell line. The effects of sodium caseinate hydrolysed by chymosin on the gut-derived satiety hormone glucagon-like peptide-1 (GLP-1) were investigated; the resulting casein-derived peptides displayed good in vitro and in vivo secretion of GLP-1. Overall, the studies described in this thesis expand on current knowledge and provide good evidence for the use of novel methods for the isolation, generation and characterisation of bioactive proteins and/or peptides.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

IL-33 is a member of the IL-1 family of cytokines. IL-33 is predominantly located within the nucleus of cells where it plays a role in gene regulation. Given the right combination of signals and cellular damage, stored IL-33 is released from the cell where it can interact with its receptor ST2, triggering danger-associated responses and act as a cellular "alarmin". Whilst IL-33/ST2 signalling has been shown to induce potent pro-inflammatory responses that can be detrimental in certain disease states, a dichotomous, protective role of IL-33 in promoting wound healing has also emerged in multiple tissues types. This review will explore the current literature concerning this homeostatic role of IL-33/ST2 in tissue repair and also review its role in uncontrolled wound responses as seen in both fibrosis and tumorigenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Post-translational modification of the γ-secretase protease complexes and their substrates has an important role in controlling receptor-initiated signalling events, which are critically important in the pathogenesis of cancer, inflammatory and Alzheimer’s disease. Our lab has previously characterised an interaction between TRAF6 and presenilin-1, which lead to the identification of interleukin-1 (IL-1) receptor type 1 (IL-1R1) and Toll-like receptor-4 (TLR4) as novel γ-secretase substrates. Subsequently our group showed that TRAF6 promoted ubiquitination and γ-secretase cleavage of IL-1R1. The aim of this project is to study the association between TRAF6 and the presenilins, the critical γ-secretase complex components, and to determine the functional importance of TRAF6-mediated ubiquitination of γ-secretase substrates. Firstly, we show that the full-length presenilins are novel substrates of TRAF6-mediated Lysine-63-linked polyubiquitination. Secondly, we show that co-expression of TRAF6 and the presenilins increases the stability and alters the turnover of the presenilins. Thirdly, we reveal that TRAF6-mediated ubiquitination of presenilin does not affect γ-secretase enzyme activity, but may regulate the full-length presenilin functions such as ER Ca2+ signalling. Previously, we have reported IL-1R1 as a novel substrate of TRAF6-mediated ubiquitination. In this study, we identified five lysine residues in the IL-1R1 intracellular domain targeted by TRAF6-mediated polyubiquitination. Furthermore, mutagenesis of these five lysine residues led to decreased IL-1R1 cell surface expression, precluded the ectodomain shedding and attenuated the responsiveness to IL-1β stimulation, demonstrating the critical role of TRAF6 in IL-1R1 trafficking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crohn’s disease (CD) is a chronic, relapsing inflammatory condition affecting the gastrointestinal tract of humans, of which there is currently no cure. The precise etiology of CD is unknown, although it has become widely accepted that it is a multifactorial disease which occurs as a result of an abnormal immune response to commensal enteric bacteria in a genetically susceptible host. Recent studies have shown that a new group of Escherichia coli, called Adherent Invasive Escherichia coli (AIEC) are present in the guts of CD patients at a higher frequency than in healthy subjects, suggesting that they may play a role in the initiation and/or maintenance of the inflammation associated with CD. Two phenotypes define an AIEC and differentiate them from other groups of E. coli. Firstly, AIEC can adhere to and invade epithelial cells; and secondly, they can replicate in macrophages. In this study, we use a strain of AIEC which has been isolated from the colonic mucosa of a CD patient, called HM605, to examine the relationship between AIEC and the macrophage. We show, using a systematic mutational approach, that while the Tricarboxylic acid (TCA) cycle, the glyoxylate pathway, the Entner-Doudoroff (ED) pathway, the Pentose Phosphate (PP) pathway and gluconeogenesis are dispensable for the intramacrophagic growth of HM605, glycolysis is an absolute requirement for the ability of this organism to replicate intracellularly. We also show that HM605 activates the inflammasome, a major driver of inflammation in mammals. Specifically, we show that macrophages infected with HM605 produce significantly higher levels of the pro-inflammatory cytokine IL-1β than macrophages infected with a non-AIEC strain, and we show by immunoblotting that this is due to cleavage of caspase-1. We also show that macrophages infected with HM605 exhibit significantly higher levels of pyroptosis, a form of inflammatory cell death, than macrophages infected with a non-AIEC strain. Therefore, AIEC strains are more pro-inflammatory than non-AIEC strains and this may have important consequences in terms of CD pathology. Moreover, we show that while inflammasome activation by HM605 is independent of intracellular bacterial replication, it is dependent on an active bacterial metabolism. Through the establishment of a genetic screen aimed at identifying mutants which activate the inflammasome to lower levels than the wild-type, we confirm our observation that bacterial metabolism is essential for successful inflammasome activation by HM605 and we also uncover new systems/structures that may be important for inflammasome activation, such as the BasS/BasR two-component system, a type VI secretion system and a K1 capsule. Finally, in this study, we also identify a putative small RNA in AIEC strain LF82, which may be involved in modulating the motility of this strain. Overall this works shows that, in the absence of specialised virulence factors, the ability of AIEC to metabolise within the host cell may be a key determinant of its pathogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The γ-secretase protease complexes and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signalling events, which have a central role in Alzheimer’s disease, cancer progression and immune surveillance. It has previously been reported that the Interleukin-1 receptor, type 1, (IL-1R1) is a substrate for regulated intramembrane proteolysis, mediated by presenilin (PS)-dependent γ-secretase activity. The aims of this project were twofold. Firstly, to determine the conservation of regulated intramembrane proteolysis as a physiological occurrence amongst other cytokine receptors. In this regard, similar to IL-1R1, we identified the Tumour necrosis factor receptor type 1 (TNFR1) and the Toll like receptor 4 (TLR4) as novel γ-secretase substrates. Secondly, given that the diversity of signalling events mediated by the IL-1R1, TLR4 and TNFR1 are spatially segregated, we investigated the spatial distribution, subcellular trafficking and subcellular occurrence of regulated intramembrane proteolysis of IL-1R1, TLR4 and TNFR1. Using dynasore an inhibitor of clathrin-dependent receptor endocytosis, both ectodomain shedding and γ-secretase-mediated cleavage of IL-1R1 were observed post-internalization. In contrast, TNFR-1 underwent ectodomain shedding at the cell surface followed by endosomal γ-secretase-mediated cleavage. Furthermore, immortalised fibroblasts from PS1-deficient mice showed impaired γ-secretasemediated cleavage of IL-1R1 and TNFR1, indicating that both are cleaved by PS1-and not PS2-containing γ-secretase complexes. Subcellular fractionation and immunofluorescence studies revealed that the γ-secretase generated IL-1R1 ICD translocates to the nucleus on IL-1β stimulation. These observations further demonstrate the novel PS-dependent means of modulating IL-1β, LPS and TNFα- mediated immune responses by regulating IL-1R1/TLR4/TNFR1 protein levels within the cells.