10 resultados para Hypoxia

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic sustained hypoxia (CH) induces functional weakness, atrophy, and mitochondrial remodelling in the diaphragm muscle. Animal models of CH present with changes similar to patients with respiratory-related disease, thus, elucidating the molecular mechanisms driving these adaptations is clinically important. We hypothesize that ROS are pivotal in diaphragm muscle adaptation to CH. C57BL6/J mice were exposed to CH (FiO2=0.1) for one, three, and six weeks. Sternohyoid (upper airway dilator), extensor digitorum longus (EDL), and soleus were studied as reference muscles as well as the diaphragm. The diaphragm was profiled using a redox proteomics approach followed by mass spectrometry. Following this, redox-modified metabolic enzyme activities and atrophy signalling were assessed using spectrophotometric assays and ELISA. Diaphragm isotonic performance was assessed after six weeks of CH ± chronic antioxidant supplementation. Protein carbonyl and free thiol content in the diaphragm were increased and decreased respectively after six weeks of CH – indicative of protein oxidation. These changes were temporally modulated and muscle specific. Extensive remodelling of metabolic proteins occurred and the stress reached the cross-bridge. Metabolic enzyme activities in the diaphragm were, for the most part, decreased by CH and differential muscle responses were observed. Redox sensitive chymotrypsin-like proteasome activity of the diaphragm was increased and atrophy signalling was observed through decreased phospho-FOXO3a and phospho-mTOR. Phospho-p38 MAPK content was increased and this was attenuated by antioxidant treatment. Hypoxia decreased power generating capacity of the diaphragm and this was restored by N-acetyl-cysteine (NAC) but not by tempol. Redox remodelling is pivotal for diaphragm adaptation to chronic sustained hypoxia. Muscle changes are dependent on duration of the hypoxia stimulus, activity profile of the muscle, and molecular composition of the muscle. The working respiratory muscles and slow oxidative fibres are particularly susceptible. NAC (antioxidant) may be useful as an adjunct therapy in respiratory-related diseases characterised by hypoxic stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF) and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alterations to the supply of oxygen during early life presents a profound stressor to physiological systems with aberrant remodeling that is often long-lasting. Chronic intermittent hypoxia (CIH) is a feature of apnea of prematurity, chronic lung disease, and sleep apnea. CIH affects respiratory control but there is a dearth of information concerning the effects of CIH on respiratory muscles, including the diaphragm—the major pump muscle of breathing. We investigated the effects of exposure to gestational CIH (gCIH) and postnatal CIH (pCIH) on diaphragm muscle function in male and female rats. CIH consisted of exposure in environmental chambers to 90 s of hypoxia reaching 5% O2 at nadir, once every 5 min, 8 h a day. Exposure to gCIH started within 24 h of identification of a copulation plug and continued until day 20 of gestation; animals were studied on postnatal day 22 or 42. For pCIH, pups were born in normoxia and within 24 h of delivery were exposed with dams to CIH for 3 weeks; animals were studied on postnatal day 22 or 42. Sham groups were exposed to normoxia in parallel. Following gas exposures, diaphragm muscle contractile, and endurance properties were examined ex vivo. Neither gCIH nor pCIH exposure had effects on diaphragm muscle force-generating capacity or endurance in either sex. Similarly, early life exposure to CIH did not affect muscle tolerance of severe hypoxic stress determined ex vivo. The findings contrast with our recent observation of upper airway dilator muscle weakness following exposure to pCIH. Thus, the present study suggests a relative resilience to hypoxic stress in diaphragm muscle. Co-ordinated activity of thoracic pump and upper airway dilator muscles is required for optimal control of upper airway caliber. A mismatch in the force-generating capacity of the complementary muscle groups could have adverse consequences for the control of airway patency and respiratory homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic intermittent hypoxia (CIH) causes upper airway muscle dysfunction. We hypothesized that the superoxide generating NADPH oxidase (NOX) is upregulated in CIH-exposed muscle causing oxidative stress. Adult male Wistar rats were exposed to intermittent hypoxia (5% O2 at the nadir for 90 s followed by 210 s of normoxia), for 8 h per day for 14 days. The effect of CIH exposure on the expression of NOX subunits, total myosin and 4-hydroxynonenal (4-HNE) protein adducts in sternohyoid muscle was determined by western blotting and densitometry. Sternohyoid protein free thiol and carbonyl group contents were determined by 1D electrophoresis using specific fluorophore probes. Aconitase and glutathione reductase activities were measured as indices of oxidative stress. HIF-1α content and key oxidative and glycolytic enzyme activities were determined. Contractile properties of sternohyoid muscle were determined ex vivo in the absence and presence of apocynin (putative NOX inhibitor). We observed an increase in NOX 2 and p47 phox expression in CIH-exposed sternohyoid muscle with decreased aconitase and glutathione reductase activities. There was no evidence, however, of increased lipid peroxidation or protein oxidation in CIH-exposed muscle. CIH exposure did not affect sternohyoid HIF-1α content or aldolase, lactate dehydrogenase, or glyceraldehyde-3-phosphate dehydrogenase activities. Citrate synthase activity was also unaffected by CIH exposure. Apocynin significantly increased sternohyoid force and power. We conclude that CIH exposure upregulates NOX expression in rat sternohyoid muscle with concomitant modest oxidative stress but it does not result in a HIF-1α-dependent increase in glycolytic enzyme activity. Constitutive NOX activity decreases sternohyoid force and power. Our results implicate NOX-dependent reactive oxygen species in CIH-induced upper airway muscle dysfunction which likely relates to redox modulation of key regulatory proteins in excitation-contraction coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intermittent hypoxia is a feature of apnea of prematurity (AOP), chronic lung disease, and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH) during postnatal development (pCIH) causes upper airway muscle weakness in both sexes, which persists for several weeks. We sought to examine if there are persistent sex-dependent effects of pCIH on respiratory muscle function into adulthood and/or increased susceptibility to re-exposure to CIH in adulthood in animals previously exposed to CIH during postnatal development. We hypothesized that pCIH would cause long-lasting muscle impairment and increased susceptibility to subsequent hypoxia. Within 24 h of delivery, pups and their respective dams were exposed to CIH: 90 s of hypoxia reaching 5% O2 at nadir; once every 5 min, 8 h per day for 3 weeks. Sham groups were exposed to normoxia in parallel. Three groups were studied: sham; pCIH; and pCIH combined with adult CIH (p+aCIH), where a subset of the pCIH-exposed pups were re-exposed to the same CIH paradigm beginning at 13 weeks. Following gas exposures, sternohyoid and diaphragm muscle isometric contractile and endurance properties were examined ex vivo. There was no apparent lasting effect of pCIH on respiratory muscle function in adults. However, in both males and females, re-exposure to CIH in adulthood in pCIH-exposed animals caused sternohyoid (but not diaphragm) weakness. Exposure to this paradigm of CIH in adulthood alone had no effect on muscle function. Persistent susceptibility in pCIH-exposed airway dilator muscle to subsequent hypoxic insult may have implications for the control of airway patency in adult humans exposed to intermittent hypoxic stress during early life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distribution of soft sediment benthic fauna and the environmental factors affecting them were studied, to investigate changes across spatial and temporal scales. Investigations took place at Lough Hyne Marine Reserve using a range of methods. Data on the sedimentation rates of organic and inorganic matter were collected at monthly intervals for one year at a number of sites around the Lough, by use of vertical midwater-column sediment traps. Sedimentation of these two fractions were not coupled; inorganic matter sedimentation depended on hydrodynamic and weather factors, while the organic matter sedimentation was more complex, being dependent on biological and chemical processes in the water column. The effects of regular hypoxic episodes on benthic fauna due to a natural seasonal thermocline were studied in the deep Western Trough, using camera-equipped remotely-operated vehicle to follow transects, on a three-monthly basis over one year. In late summer, the area below the thermocline of the Western Trough was devoid of visible fauna. Decapod crustaceans were the first taxon to make use of ameliorating oxygen conditions in autumn, by darting below the thermocline depth, most likely to scavenge. This was indicated by tracks that they left on the surface of the Trough floor. Some species, most noticeably Fries’ goby Lesueurigobius friesii, migrated below the thermocline depth when conditions were normoxic and established semi-permanent burrows. Their population encompassed all size classes, indicating that this habitat was not limited to juveniles of this territorial species. Recolonisation by macrofauna and burrowing megafauna was studied during normoxic conditions, from November 2009 to May 2010. Macrofauna displayed a typical post-disturbance pattern of recolonisation with one species, the polychaete Scalibregma inflatum, occurring at high abundance levels in March 2010. In May, this population had become significantly reduced and a more diverse community was established. The abundance of burrowing infauna comprising decapods crabs and Fries’ gobies, was estimated by identifying and counting their distinctive burrow structures. While above the summer thermocline depth, burrow abundance increased in a linear fashion, below the thermocline depth a slight reduction of burrow abundance occurred in May, when oxygen conditions deteriorated again. The majority of the burrows occurring in May were made by Fries’ gobies, which are thought to encounter low oxygen concentrations in their burrows. Reduction in burrow abundance of burrowing shrimps Calocaris macandreae and Callianassa subterranea (based on descriptions of burrow structures from the literature), from March to May, might be related to their reduced activity in hypoxia, leading to loss of structural burrow maintenance. Spatial and temporal changes to macrofaunal assemblage structures were studied seasonally for one year across 5 sites in the Lough and subject to multivariate statistical analysis. Assemblage structures were significantly correlated with organic matter levels in the sediment, the amounts of organic matter settling out of the water column one month before macrofaunal sampling took place as well as current speed and temperature. This study was the first to investigate patterns and processes in the Lough soft sediment ecology across all 3 basins on a temporal and spatial scale. An investigation into the oceanographic aspects of the development, behaviour and break-down of the summer thermocline of Lough Hyne was performed in collaboration with researchers from other Irish institutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poor oxygenation (hypoxia) is a common characteristic of human solid tumours, and is associated with cell survival, metastasis and resistance to radio- and chemotherapies. Hypoxia-induced stabilisation of hypoxia-inducible factor-1α (HIF-1α) leads to changes in expression of various genes associated with growth, vascularisation and metabolism. However whether HIF-1α plays a causal role in promoting hypoxic resistance to antitumour therapies remains unclear. In this study we used pharmacological and genetic methods to investigate the HIF-1α contribution to radio- and chemoresistance in four cancer cell lines derived from cervical, breast, prostate and melanoma human tumours. Under normoxia or hypoxia (<0.2% or 0.5% oxygen) the cells were exposed to either a standard irradiation dose (6.2 Gy) or chemotherapeutic drug (cisplatin), and subsequent cell proliferation (after 7 days) was measured in terms of resazurin reduction. Oxygen-dependent radio- and chemosensitivity was evident in all wild type whereas it was reduced or abolished in HIF-1α (siRNA) knockdown cells. The effects of HIF-1α-modulating drugs (EDHB, CoCl2, deferoxamine to stabilise and R59949 to destabilise it) reflected both HIF-1α-dependent and independent mechanisms. Collectively the data show that HIF-1α played a causal role in our in vitro model of hypoxia-induced radioresistance whereas its contribution to oxygendependent sensitivity to cisplatin was less clear-cut. Although this behavior is likely to be conditioned by further biological and physical factors operating in vivo, it is consistent with the hypothesis that interventions directed at HIF-1α may improve the clinical effectiveness of tumour treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene therapy has emerged as a realistic prospect for the treatment of cancer due to its potential for selective tumour cell targeting. The greatest challenge gene delivery vectors face is the ability to safely and efficiently deliver genes into target cells. The overall objectives of this thesis are to evaluate the efficacy of various gene delivery methods in a clinically relevant tumour model and to also investigate potential strategies for tumour selective delivery. We began with the development of a tumour slice model system using patient waste tissue. This model involves the use of fresh human tumour tissue, cut into thin slices and maintained ex vivo and is universally applicable to gene delivery methods, using a real-time luminescence detection method to assess gene delivery. The nature of the ex vivo culture system permitted examination of specific physiological variables, the influence of intratumoural factors and tissue specific effects on vector expression. Adenoviral vectors under the control of the human CXCR4 promoter demonstrated a 'tumour on' and 'normal off' expression profile when compared with the ubiquitously active CMV promoter when tested in patient tumour tissue. In addition, we developed an ex vivo system of changing oxygenation using the hypoxia inducer, cobalt, to mimic the transient hypoxic conditions found in solid tumours. We found that Adenoviral transgene expression was robust in the cycling hypoxic conditions relevant to solid tumours and re-oxygenation of chronically hypoxic tissue enhanced transgene expression. Finally, we demonstrated an AAV-based tumour targeting strategy using a tumour-selective promoter allowing for the efficient targeting of AAV vectors to cancer cells and the sparing of normal tissue in both murine metastatic liver tumours models and patient tissue. The thesis highlights the importance of indepth preclinical assessment of novel therapeutics and may serve as a platform for further testing of novel gene delivery approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycolysis, glutaminolysis, the Krebs cycle and oxidative phosphorylation are the main metabolic pathways. Exposing cells to key metabolic substrates (glucose, glutamine and pyruvate); investigation of the contribution of substrates in stress conditions such as uncoupling and hypoxia was conducted. Glycolysis, O2 consumption, O2 and ATP levels and hypoxia inducible factor (HIF) signalling in PC12 cells were investigated. Upon uncoupling with FCCP mitochondria were depolarised similarly in all cases, but a strong increase in respiration was only seen in the cells fed on glutamine with either glucose or pyruvate. Inhibition of glutaminolysis reversed the glutamine dependant effect. Differential regulation of the respiratory response to FCCP by metabolic environment suggests mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function. At reduced O2 availability (4 % and 0 % O2), cell bioenergetics and local oxygenation varied depending on the substrate composition. Results indicate that both supply and utilisation of key metabolic substrates can affect the pattern of HIF-1/2α accumulation by differentially regulating iO2¬, ATP levels and Akt/Erk/AMPK pathways. Inhibition of key metabolic pathways can modulate HIF regulatory pathways, metabolic responses and survival of cancer cells in hypoxia. Hypoxia leads to transcriptional activation, by HIF, of pyruvate dehydrogenase (PDH) kinase which phosphorylates and inhibits PDH, a mitochondrial enzyme that converts pyruvate into acetyl-CoA. The levels of PDH (total and phosphorylated), PDH kinase and HIF-1α were analysed in HCT116 and HCT116 SCO2-/- (deficient in complex IV of the respiratory chain) grown under 20.9 % and 3 % O2. Data indicate that regulation of PDH can occur in a manner independent of the HIF-1/PDH kinase 1 axis, mitochondrial respiration and the demand for acetyl-CoA. Collectively these results can be applied to many diseases; reduced nutrient supply and O2 during ischemia/stroke, hypoglycaemia in diabetes mellitus and cancer associated changes in uncoupling protein expression levels.