6 resultados para Hybrid polymer networks
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology, grant 07/CE/I1147); Scientific Foundation Ireland (ITOBO (398-CRP))
Resumo:
This work considers the effect of hardware constraints that typically arise in practical power-aware wireless sensor network systems. A rigorous methodology is presented that quantifies the effect of output power limit and quantization constraints on bit error rate performance. The approach uses a novel, intuitively appealing means of addressing the output power constraint, wherein the attendant saturation block is mapped from the output of the plant to its input and compensation is then achieved using a robust anti-windup scheme. A priori levels of system performance are attained using a quantitative feedback theory approach on the initial, linear stage of the design paradigm. This hybrid design is assessed experimentally using a fully compliant 802.15.4 testbed where mobility is introduced through the use of autonomous robots. A benchmark comparison between the new approach and a number of existing strategies is also presented.
Resumo:
Electronic signal processing systems currently employed at core internet routers require huge amounts of power to operate and they may be unable to continue to satisfy consumer demand for more bandwidth without an inordinate increase in cost, size and/or energy consumption. Optical signal processing techniques may be deployed in next-generation optical networks for simple tasks such as wavelength conversion, demultiplexing and format conversion at high speed (≥100Gb.s-1) to alleviate the pressure on existing core router infrastructure. To implement optical signal processing functionalities, it is necessary to exploit the nonlinear optical properties of suitable materials such as III-V semiconductor compounds, silicon, periodically-poled lithium niobate (PPLN), highly nonlinear fibre (HNLF) or chalcogenide glasses. However, nonlinear optical (NLO) components such as semiconductor optical amplifiers (SOAs), electroabsorption modulators (EAMs) and silicon nanowires are the most promising candidates as all-optical switching elements vis-à-vis ease of integration, device footprint and energy consumption. This PhD thesis presents the amplitude and phase dynamics in a range of device configurations containing SOAs, EAMs and/or silicon nanowires to support the design of all optical switching elements for deployment in next-generation optical networks. Time-resolved pump-probe spectroscopy using pulses with a pulse width of 3ps from mode-locked laser sources was utilized to accurately measure the carrier dynamics in the device(s) under test. The research work into four main topics: (a) a long SOA, (b) the concatenated SOA-EAMSOA (CSES) configuration, (c) silicon nanowires embedded in SU8 polymer and (d) a custom epitaxy design EAM with fast carrier sweepout dynamics. The principal aim was to identify the optimum operation conditions for each of these NLO device configurations to enhance their switching capability and to assess their potential for various optical signal processing functionalities. All of the NLO device configurations investigated in this thesis are compact and suitable for monolithic and/or hybrid integration.
Resumo:
Wireless sensor networks (WSN) are becoming widely adopted for many applications including complicated tasks like building energy management. However, one major concern for WSN technologies is the short lifetime and high maintenance cost due to the limited battery energy. One of the solutions is to scavenge ambient energy, which is then rectified to power the WSN. The objective of this thesis was to investigate the feasibility of an ultra-low energy consumption power management system suitable for harvesting sub-mW photovoltaic and thermoelectric energy to power WSNs. To achieve this goal, energy harvesting system architectures have been analyzed. Detailed analysis of energy storage units (ESU) have led to an innovative ESU solution for the target applications. Battery-less, long-lifetime ESU and its associated power management circuitry, including fast-charge circuit, self-start circuit, output voltage regulation circuit and hybrid ESU, using a combination of super-capacitor and thin film battery, were developed to achieve continuous operation of energy harvester. Low start-up voltage DC/DC converters have been developed for 1mW level thermoelectric energy harvesting. The novel method of altering thermoelectric generator (TEG) configuration in order to match impedance has been verified in this work. Novel maximum power point tracking (MPPT) circuits, exploring the fractional open circuit voltage method, were particularly developed to suit the sub-1mW photovoltaic energy harvesting applications. The MPPT energy model has been developed and verified against both SPICE simulation and implemented prototypes. Both indoor light and thermoelectric energy harvesting methods proposed in this thesis have been implemented into prototype devices. The improved indoor light energy harvester prototype demonstrates 81% MPPT conversion efficiency with 0.5mW input power. This important improvement makes light energy harvesting from small energy sources (i.e. credit card size solar panel in 500lux indoor lighting conditions) a feasible approach. The 50mm × 54mm thermoelectric energy harvester prototype generates 0.95mW when placed on a 60oC heat source with 28% conversion efficiency. Both prototypes can be used to continuously power WSN for building energy management applications in typical office building environment. In addition to the hardware development, a comprehensive system energy model has been developed. This system energy model not only can be used to predict the available and consumed energy based on real-world ambient conditions, but also can be employed to optimize the system design and configuration. This energy model has been verified by indoor photovoltaic energy harvesting system prototypes in long-term deployed experiments.
Resumo:
My original contribution to knowledge is the creation of a WSN system that further improves the functionality of existing technology, whilst achieving improved power consumption and reliability. This thesis concerns the development of industrially applicable wireless sensor networks that are low-power, reliable and latency aware. This work aims to improve upon the state of the art in networking protocols for low-rate multi-hop wireless sensor networks. Presented is an application-driven co-design approach to the development of such a system. Starting with the physical layer, hardware was designed to meet industry specified requirements. The end system required further investigation of communications protocols that could achieve the derived application-level system performance specifications. A CSMA/TDMA hybrid MAC protocol was developed, leveraging numerous techniques from the literature and novel optimisations. It extends the current art with respect to power consumption for radio duty-cycled applications, and reliability, in dense wireless sensor networks, whilst respecting latency bounds. Specifically, it provides 100% packet delivery for 11 concurrent senders transmitting towards a single radio duty cycled sink-node. This is representative of an order of magnitude improvement over the comparable art, considering MAC-only mechanisms. A novel latency-aware routing protocol was developed to exploit the developed hardware and MAC protocol. It is based on a new weighted objective function with multiple fail safe mechanisms to ensure extremely high reliability and robustness. The system was empirically evaluated on two hardware platforms. These are the application-specific custom 868 MHz node and the de facto community-standard TelosB. Extensive empirical comparative performance analyses were conducted against the relevant art to demonstrate the advances made. The resultant system is capable of exceeding 10-year battery life, and exhibits reliability performance in excess of 99.9%.
Resumo:
Energy efficient Wavelength Division Multiplexing (WDM) is the key to satisfying the future bandwidth requirements of datacentres. As the silicon photonics platform is regarded the only technology able to meet the required power and cost efficiency levels, the development of silicon photonics compatible narrow linewidth lasers is now crucial. We discuss the requirements for such laser systems and report the experimental demonstration of a compact uncooled external-cavity mW-class laser architecture with a tunable Si Photonic Crystal resonant reflector, suitable for direct Frequency Modulation.