2 resultados para Huntington

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study contexualises the relationship between the armed forces and the civil authority in Ireland using and revising the theoretical framework advanced by Huntington. It tracks the evolution of the idea of a representive body for soldiers in the late 1980s, to the setting up of statutory associations under the Defence Amendment Act 1990. The study considers Irish soldiers political agitation and their use of peaceful democratic activities to achieve their aims. It highlights the fundamental policy arguments that were made against the idea of representation for the army and positions those arguments in the study of civil-military relations. Utilising unique access to secret Department of Defence files, it reveals in-depth ideological arguments advanced by the military authories in Ireland against independent representation. This thesis provides an academic study of the establishment of PDFORRA. It answers key questions regarding the change in the position of Irish government who were categorically opposed to the idea of representation in the army. It illustrates the involvement of other agencies such as the European Organisation of Military Associations (Euromil) reveals reciprocal support by the Irish associations to other emerging groups in Spain. Accessing as yet unpublished Department of Defence files, study analyses tension between the military authorities and the government. It highlights for the first time the role of enlisted personnel in the shaping of new state structures and successfully dismmisses Huntingtons theoretical contention that enlisted personnel are of no consequence in the study of civil-military relations. It fills a gap in our understanding, identified by Finer, as to how politicisation of soldiers takes place. This thesis brings a new dimension to the discipline of civil-military relations and creates new knowledge that will enhance our understanding of an area not covered previously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington’s Disease (HD) is a rare autosomal dominant neurodegenerative disease caused by the expression of a mutant Huntingtin (muHTT) protein. Therefore, preventing the expression of muHTT by harnessing the specificity of the RNA interference (RNAi) pathway is a key research avenue for developing novel therapies for HD. However, the biggest caveat in the RNAi approach is the delivery of short interfering RNA (siRNAs) to neurons, which are notoriously difficult to transfect. Indeed, despite the great advances in the field of nanotechnology, there remains a great need to develop more effective and less toxic carriers for siRNA delivery to the Central Nervous System (CNS). Thus, the aim of this thesis was to investigate the utility of modified amphiphilic β-cyclodextrins (CDs), oligosaccharide-based molecules, as non-viral vectors for siRNA delivery for HD. Modified CDs were able to bind and complex siRNAs forming nanoparticles capable of delivering siRNAs to ST14A-HTT120Q cells and to human HD fibroblasts, and reducing the expression of the HTT gene in these in vitro models of HD. Moreover, direct administration of CD.siRNA nanoparticles into the R6/2 mouse brain resulted in significant HTT gene expression knockdown and selective alleviation of rotarod motor deficits in this mouse model of HD. In contrast to widely used transfection reagents, CD.siRNA nanoparticles only induced limited cytotoxic and neuroinflammatory responses in multiple brain-derived cell-lines, and also in vivo after single direct injections into the mouse brain. Alternatively, we have also described a PEGylation-based formulation approach to further stabilise CD.siRNA nanoparticles and progress towards a systemic delivery nanosystem. Resulting PEGylated CD.siRNA nanoparticles showed increased stability in physiological saltconditions and, to some extent, reduced protein-induced aggregation. Taken together, the work outlined in this thesis identifies modified CDs as effective, safe and versatile siRNA delivery systems that hold great potential for the treatment of CNS disorders, such as HD.