2 resultados para Host-parasite relationships

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite a multitude of environmental stressors, the Varroa mite is still regarded as the greatest cause of honey bee mortality in its invaded range. Breeding honey bees that are resistant to the mite is an important area of research. This thesis aimed to gain a better understanding of the grooming and hygienic behaviours of Russian honey bees (RHB). The effect of a break in the synchrony of a mite’s life cycle on reproductive success was tested through brood inoculation experiments. Mites released by hygienic behaviour and forced to enter a new cell are less likely to lay male offspring. Through laboratory cage assays it was found that daughter mites are more susceptible to grooming behaviour. A new method of marking Varroa mites was developed which would enable a single cohort of mites to be followed after inoculation. A strong brood removal trait was noticed in RHB colonies, therefore they were tested for Varroa sensitive hygienic (VSH) behaviour. RHB demonstrated levels of VSH as high as the USDA line bred specifically for this behaviour. In addition the same QTL found to be responsible for the trait in VSH bees, was associated with VSH in RHB stock. Previous work showed that the ratio of older mites to total trapped mites (O/T) in the debris of honey bee colonies demonstrated the strongest association with colony infestation. This research showed that O/T is associated with VSH and brood removal behaviour. In addition, bees that displayed high levels of VSH in this study were also more likely to spend a longer amount of time grooming in laboratory assays. This indicates that both grooming and hygienic behaviours play important roles in the resistance of RHB stock. Their likelihood to be expressed by other stocks is discussed and recommendations for further research are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parasite Bonamia ostreae has decimated Ostrea edulis stocks throughout Europe. The complete life cycle and means of transmission of the parasite remains unknown. The methods used to diagnose B. ostreae were examined to determine sensitivity and reproducibility. Two methods, with fixed protocols, should be used for the accurate detection of infection within a sample. A 13-month study of two stocks of O. edulis with varying periods of exposure to B. ostreae, was undertaken to determine if varying lengths of exposure would translate into observations of differing susceptibility. Oyster stocks can maintain themselves over extended periods of time in B. ostreae endemic areas. To identify a well performing spat stock, which could be used to repopulate beds within the region, hatchery bred spat from three stocks found in the North sea were placed on a B. ostreae infected bed and screened for growth, mortality and prevalence of infection. Local environmental factors may influence oyster performance, with local stocks better adapted to these conditions. Sediment and macroinvertebrate species were screened to investigate mechanisms by which B. ostreae may be maintaining itself on oyster beds. Mytilus edulis was positive, indicating that B. ostreae may use incidental carriers as a method of maintaining itself. The ability of oyster larvae to pick up infection from the surrounding environment was investigated by collecting larvae from brooding oysters from different areas. Larvae may acquire the pathogen from the water column during the process of filter feeding by the brooding adult, even when the parents themselves are uninfected. A study was undertaken to elucidate the activity of the parasite during the initial stage of infection, when it cannot be detected within the host. A naïve stock screened negative for infection throughout the trial, using heart imprints and PCR yet B. ostreae was detected by in-situ hybridisation.