12 resultados para Host Range

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lactococcus lactis is used extensively world-wide for the production of fermented dairy products. Bacteriophages (phages) infecting L. lactis can result in slow or incomplete fermentations, or may even cause total fermentation failure. Therefore, bacteriophages disrupting L. lactis fermentation are of economic concern. This thesis employed a multifaceted approach to investigate various molecular aspects of phage-host interaction in L. lactis. The genome sequence of an Irish dairy starter strain, the prophage-cured L. lactis subsp. cremoris UC509.9, was studied. The 2,250,427 bp circular chromosome represents the smallest among its sequenced lactococcal equivalents. The genome displays clear genetic adaptation to the dairy niche in the form of extensive reductive evolution. Gene prediction identified 2066 protein-encoding genes, including 104 which showed significant homology to transposase-specifying genes. Over 9 % of the identified genes appear to be inactivated through stop codons or frame shift mutations. Many pseudogenes were found in genes that are assigned to carbohydrate and amino acid transport and metabolism orthologous groups, reflecting L. lactis UC509.9’s adaptation to the lactose and casein-rich dairy environment. Sequence analysis of the eight plasmids of L. lactis revealed extensive adaptation to the dairy environment. Key industrial phenotypes were mapped and novel lactococcal plasmid-associated genes highlighted. In addition to chromosomally-encoded bacteriophage resistance systems, six functional such systems were identified, including two abortive infection systems, AbiB and AbiD1, explaining the observed phage resistance of L. lactis UC509.9 Molecular analysis suggests that the constitutive expression of AbiB is not lethal to cells, suggesting the protein is expressed in an un/inactivated form. Analysis of 936 species phage sk1-escape mutants of AbiB revealed that all such mutants harbour mutations in orf6, which encodes the major capsid protein. Results suggest that the major capsid protein is required for activation of the AbiB system, although this requires furrther investigations. Temporal transcriptomes of L. lactis UC509.9 undergoing lytic infection with either one of two distinct bacteriophages, Tuc2009 and c2, was determined and compared to the transcriptome of uninfected UC509.9 cells. Whole genome microarrays performed at various time-points post-infection demonstrated a rather modest impact on host transcription. Alterations in the UC509.9 transcriptome during lytic infection appear phage-specific, with a relatively small number of differentially transcribed genes shared between infection with either Tuc2009 or c2. Transcriptional profiles of both bacteriophages during lytic infection was shown to generally correlate with previous studies and allowed the confirmation of previously predicted promoter sequences. Bioinformatic analysis of genomic regions encoding the presumed cell wall polysaccharide (CW PS) biosynthesis gene cluster of several strains of L. lactis was performed. Results demonstrate the presence of three dominant genetic types of this gene cluster, termed type A, B and C. These regions were used for the development of a multiplex PCR to identify CW PS genotype of various lactococcal strains. Analysis of 936 species phage receptor binding protein phylogeny (RBP) and CW PS genotype revealed an apparent correlation between RBP phylogeny and CW PS type, thereby providing a partial explanation for the observed narrow host range of 936 phages. Further analysis of the genetic locus encompassing the presumed CW PS biosynthesis operon of eight strains identified as belonging to the CW PS C (geno)type, revealed the presence of a variable region among the examined strains. The obtained comparative analysis allowed for the identification of five subgroups of the C type, named C1 to C5. We purified an acidic polysaccharide from the cell wall of L. lactis 3107 (C2 subtype) and confirmed that it is structurally different from the CW PS of the C1 subtype L. lactis MG1363. Combinations of genes from the variable region of C2 subtype were amplified from L. lactis 3107 and introduced into a mutant of the C1 subtype L. lactis NZ9000 (a direct derivative of MG1363) deficient in CW PS biosynthesis. The resulting recombinant mutant synthesized a CW PS with a composition characteristic for that of the C2 subtype L. lactis 3107 and not the wildtype C1 L. lactis NZ9000. The recombinant mutant exhibited a changed phage resistance/sensitivity profile consistent with that of L. lactis 3107, which unambiguously demonstrated that L. lactis 3107 CW PS is the host cell surface receptor of two bacteriophages belonging to the P335 species as well as phages that are member of the 936 species. The research presented in this thesis has significantly advanced our understanding of L. lactis bacteriophage-host interactions in several ways. Firstly, the examination of plasmidencoded bacteriophage resistance systems has allowed inferences to be made regarding the mode of action of AbiB, thereby providing a platform for further elucidation of the molecular trigger of this system. Secondly, the phage infection transcriptome data presented, in addition to previous work, has made L. lactis a model organism in terms of transcriptomic studies of bacteriophage-host interactions. And finally, the research described in this thesis has for the first time explicitly revealed the nature of a carbohydrate bacteriophage receptor in L. lactis, while also providing a logical explanation for the observed narrow host ranges exhibited by 936 and P335 phages. Future research in discerning the structures of other L. lactis CW PS, combined with the determination of the molecular interplay between receptor binding proteins of these phages and CW PS will allow an in depth understanding of the mechanism by which the most prevalent lactococcal phages identify and adsorb to their specific host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a successful ligand- and liquid-free solid state route to form metal pyrophosphates within a layered graphitic carbon matrix through a single step approach involving pyrolysis of previously synthesized organometallic derivatives of a cyclotriphosphazene. In this case, we show how single crystal Mn2P2O7 can be formed on either the micro- or the nanoscale in the complete absence of solvents or solutions by an efficient combustion process using rationally designed macromolecular trimer precursors, and present evidence and a mechanism for layered graphite host formation. Using in situ Raman spectroscopy, infrared spectroscopy, X-ray diffraction, high resolution electron microscopy, thermogravimetric and differential scanning calorimetric analysis, and near-edge X-ray absorption fine structure examination, we monitor the formation process of a layered, graphitic carbon in the matrix. The identification of thermally and electrically conductive graphitic carbon host formation is important for the further development of this general ligand-free synthetic approach for inorganic nanocrystal growth in the solid state, and can be extended to form a range of transition metals pyrophosphates. For important energy storage applications, the method gives the ability to form oxide and (pyro)phosphates within a conductive, intercalation possible, graphitic carbon as host–guest composites directly on substrates for high rate Li-ion battery and emerging alternative positive electrode materials

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lacticin 3147, enterocin AS-48, lacticin 481, variacin, and sakacin P are bacteriocins offering promising perspectives in terms of preservation and shelf-life extension of food products and should find commercial application in the near future. The studies detailing their characterization and bio-preservative applications are reviewed. Transcriptomic analyses showed a cell wall-targeted response of Lactococcus lactis IL1403 during the early stages of infection with the lytic bacteriophage c2, which is probably orchestrated by a number of membrane stress proteins and involves D-alanylation of membrane lipoteichoic acids, restoration of the physiological proton motive force disrupted following bacteriophage infection, and energy conservation. Sequencing of the eight plasmids of L. lactis subsp. cremoris DPC3758 from raw milk cheese revealed three anti-phage restriction/modification (R/M) systems, immunity/resistance to nisin, lacticin 481, cadmium and copper, and six conjugative/mobilization regions. A food-grade derivative strain with enhanced bacteriophage resistance was generated via stacking of R/M plasmids. Sequencing and functional analysis of the four plasmids of L. lactis subsp. lactis biovar. diacetylactis DPC3901 from raw milk cheese revealed genes novel to Lactococcus and typical of bacteria associated with plants, in addition to genes associated with plant-derived lactococcal strains. The functionality of a novel high-affinity regulated system for cobalt uptake was demonstrated. The bacteriophage resistant and bacteriocin-producing plasmid pMRC01 places a metabolic burden on lactococcal hosts resulting in lowered growth rates and increased cell permeability and autolysis. The magnitude of these effects is strain dependent but not related to bacteriocin production. Starters’ acidification capacity is not significantly affected. Transcriptomic analyses showed that pMRC01 abortive infection (Abi) system is probably subjected to a complex regulatory control by Rgg-like ORF51 and CopG-like ORF58 proteins. These regulators are suggested to modulate the activity of the putative Abi effectors ORF50 and ORF49 exhibiting topology and functional similarities to the Rex system aborting bacteriophage λ lytic growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerium dioxide (ceria) nanoparticles have been the subject of intense academic and industrial interest. Ceria has a host of applications but academic interest largely stems from their use in the modern automotive catalyst but it is also of interest because of many other application areas notably as the abrasive in chemical-mechanical planarisation of silicon substrates. Recently, ceria has been the focus of research investigating health effects of nanoparticles. Importantly, the role of non-stoichiometry in ceria nanoparticles is implicated in their biochemistry. Ceria has well understood non-stoichiometry based around the ease of formation of anion vacancies and these can form ordered superstructures based around the fluorite lattice structure exhibited by ceria. The anion vacancies are associated with localised or small polaron states formed by the electrons that remain after oxygen desorption. In simple terms these electrons combine with Ce4+ states to form Ce3+ states whose larger ionic radii is associated with a lattice expansion compared to stoichiometric CeO2. This is a very simplistic explanation and greater defect chemistry complexity is suggested by more recent work. Various authors have shown that vacancies are mobile and may result in vacancy clustering. Ceria nanoparticles are of particular interest because of the high activity and surface area of small particulates. The sensitivity of the cerium electronic band structure to environment would suggest that changes in the properties of ceria particles at nanoscale dimensions might be expected. Notably many authors report a lattice expansion with reducing particle size (largely confined to sub-10 nm particles). Most authors assign increased lattice dimensions to the presence of a surface stable Ce2O3 type layer at low nanoparticle dimensions. However, our understanding of oxide nanoparticles is limited and their full and quantitative characterisation offers serious challenges. In a series of chemical preparations by ourselves we see little evidence of a consistent model emerging to explain lattice parameter changes with nanoparticle size. Based on these results and a review of the literature it is worthwhile asking if a model of surface enhanced defect concentration is consistent with known cerium/cerium oxide chemistries, whether this is applicable to a range of different synthesis methods and if a more consistent description is possible. In Chapter one the science of cerium oxide is outlined including the crystal structure, defect chemistry and different oxidation states available. The uses and applications of cerium oxide are also discussed as well as modelling of the lattice parameter and the doping of the ceria lattice. Chapter two describes both the synthesis techniques and the analytical methods employed to execute this research. Chapter three focuses on high surface area ceria nano-particles and how these have been prepared using a citrate sol-gel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures. X-ray diffraction methods were used to determine their lattice parameters. The particles sizes were also assessed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and BET, and, the lattice parameter was found to decrease with decreasing particle size. The results are discussed in light of the role played by surface tension effects. Chapter four describes the morphological and structural characterization of crystalline CeO2 nanoparticles prepared by forward and reverse precipitation techniques and compares these by powder x-ray diffraction (PXRD), nitrogen adsorption (BET) and high resolution transmission electron microscopy (HRTEM) analysis. The two routes give quite different materials although in both cases the products are essentially highly crystalline, dense particulates. It was found that the reverse precipitation technique gave the smallest crystallites with the narrowest size dispersion. This route also gave as-synthesised materials with higher surface areas. HRTEM confirmed the observations made from PXRD data and showed that the two methods resulted in quite different morphologies and surface chemistries. The forward route gives products with significantly greater densities of Ce3+ species compared to the reverse route. Data are explained using known precipitation chemistry and kinetic effects. Chapter five centres on the addition of terbia to ceria and has been investigated using XRD, XRF, XPS and TEM. Good solid solutions were formed across the entire composition range and there was no evidence for the formation of mixed phases or surface segregation over either the composition or temperature range investigated. Both Tb3+ and Tb4+ ions exist within the solution and the ratios of these cations are consistent with the addition of Tb8O15 to the fluorite ceria structure across a wide range of compositions. Local regions of anion vacancy ordering may be visible for small crystallites. There is no evidence of significant Ce3+ ion concentrations formed at the surface or in the bulk by the addition of terbia. The lattice parameter of these materials was seen to decrease with decreasing crystallite size. This is consistent with increased surface tension effects at small dimension. Chapter six reviews size related lattice parameter changes and surface defects in ceria nanocrystals. Ceria (CeO2) has many important applications, notably in catalysis. Many of its uses rely on generating nanodimensioned particles. Ceria has important redox chemistry where Ce4+ cations can be reversibly reduced to Ce3+ cations and associated anion vacancies. The significantly larger size of Ce3+ (compared with Ce4+) has been shown to result in lattice expansion. Many authors have observed lattice expansion in nanodimensioned crystals (nanocrystals), and these have been attributed to the presence of stabilized Ce3+ -anion vacancy combinations in these systems. Experimental results presented here show (i) that significant, but complex changes in the lattice parameter with size can occur in 2-500 nm crystallites, (ii) that there is a definitive relationship between defect chemistry and the lattice parameter in ceria nanocrystals, and (iii) that the stabilizing mechanism for the Ce3+ -anion vacancy defects at the surface of ceria nanocrystals is determined by the size, the surface status, and the analysis conditions. In this work, both lattice expansion and a more unusual lattice contraction in ultrafine nanocrystals are observed. The lattice deformations seen can be defined as a function of both the anion vacancy (hydroxyl) concentration in the nanocrystal and the intensity of the additional pressure imposed by the surface tension on the crystal. The expansion of lattice parameters in ceria nanocrystals is attributed to a number of factors, most notably, the presence of any hydroxyl moieties in the materials. Thus, a very careful understanding of the synthesis combined with characterization is required to understand the surface chemistry of ceria nanocrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The substitution of a small fraction x of nitrogen atoms, for the group V elements in conventional III-V semiconductors such as GaAs and GaSb strongly perturbs the conduction band of the host semiconductor. In this thesis we investigate the effects of nitrogen states on the band dispersion, carrier scattering and mobility of dilute nitride alloys. In the supercell model we solve the single particle Hamiltonian for a very large supercell containing randomly placed nitrogen. This model predicts a gap in the density of states of GaNxAs1−x, where this gap is filled in the Green’s function model. Therefore we develop a self-consistent Green’s function (SCGF) approach, which provides excellent agreement with supercell calculations and reveals a gap in the DOS, in contrast with the results of previous non-self-consistent Green’s function calculations. However, including the distribution of N states destroys this gap, as seen in experiment. We then examine the high field transport of carriers by solving the steadystate Boltzmann transport equation and find that it is necessary to include the full distribution of N levels in order to account for the small, low-field mobility and the absence of a negative differential velocity regime observed experimentally with increasing x. Overall the results account well for a wide range of experimental data. We also investigate the band structure, scattering and mobility of carriers by finding the poles of the SCGF, which gives lower carrier mobility for GaNxAs1−x, compared to those already calculated, in better agreement with experiments. The calculated optical absorption spectra for InyGa1−yNxAs1−x and GaNxSb1−x using the SCGF agree well with the experimental data, confirming the validity of this approach to study the band structure of these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory bowel diseases (IBD), encompasses a range of chronic, immune-mediated inflammatory disorders that are usually classified under two major relapsing conditions, Crohn’s Disease (CD) and ulcerative colitis (UC). Extensive studies in the last decades have suggested that the etiology of IBD involves environmental and genetic factors that lead to dysfunction of epithelial barrier with consequent deregulation of the mucosal immune system and inadequate responses to gut microbiota.Over the last decade, the microbial species that has attracted the most attention, with respect to CD etiology, is Eschericia coli. In CD tissue, E. coli antigens have also been identified in macrophages within the lamina propria, granulomas, and in the germinal centres of mesenteric lymph nodes of patients. They have been shown to adhere to and invade intestinal epithelial cells whilst also being able to extensively replicate within macrophages. Through the work of genome-wide association studies (GWAS), there is growing evidence to suggest that the microbial imbalance between commensal and pathogenic bacteria in the gut is aided by a defect in the innate immune system. Autophagy represents a recently investigated pathway that is believed to contribute to the pathogenesis of CD, with studies identified a variant of the autophagy gene, ATG16L1, as a susceptibility gene. The aim of my thesis was to study the cellular and molecular mechanism promoted by E.coli strains in epithelial cells and to assess their contribution to IBD pathology. To achieve this we focused on developing both an in vitro and in vivo model of AIEC infection. This allowed us to further our knowledge on possible mechanisms utilised by AIEC that promoted their survival, as well as developing a better understanding of host reactions. We demonstrate a new survival mechanism promoted by E.coli HM605, whereby it induces the expression of the anti-apoptotic proteins Bcl-XL and BCL2, all of which is exacerbated in an autophagy deficient system. We have also demonstrated the presence of AIEC-induced inflammasome responses in epithelial cells which are exacerbated in an autophagy deficient system and expression of NOD-like receptors (NLRs) which might mediate inflammasome responses in vivo. Finally, we used the Citrobacter rodentium model of infectious colitis to identify Pellino3 as an important mediator in the NOD2 pathway and regulator of intestinal inflammation. In summary, we have developed robust and versatile models of AIEC infection as well as provide new insights into AIEC mediated survival pathways. The collected data provides a new perception into why AIEC bacteria are able to prosper in conditions associated with Crohn’s disease patients with a defect in autophagy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall objective of this thesis was to gain further insight into the mechanisms underlying commensal microbial influences on intestinal ion transport. In this regard, I examined the impact of commensal host-microbe interactions on colonic secretomotor function in mouse. I first examined the influence of two different probiotic (microorganisms which, when given in adequate amounts, can confer health benefits upon the host) strains, Bifidobacterium infantis 35624 and L. salivarius UCC118 on active colonic ion transport in the mouse, using the Ussing Chamber. I found that both probiotics appear to have converging effects on ion transport at a functional level. However, L. salivarius UCC118 may preferentially inhibit neurally-evoked ion transport. Next I examined the impact of the host microbiota itself on both baseline and stimulated colonic secretomotor function as well as probiotic induced changes in ion transport. I provide further evidence that the microbiota is capable of mediating alterations in colonic ion transport, and specifically suggests that it can influence cAMP-mediated responses. Finally, it has been well documented that many probiotics elicit their effects via secreted bioactives, therefore, I studied the effects of microbially produced GABA, contained in supernatants from the commensal microbe Lactobacillus brevis DPC6108, on colonic secretomotor function. In conclusion, I believe that commensal microbes have an important and strain specific functional influence on colonic ion transport and secretomotor function and these effects can be mediated via extracellular bioactives. Moreover, I believe that functional ex-vivo studies such as those carried out in this thesis have a critical role to play in our future understanding of host-microbe interactions in the gut.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to identify selected potential probiotic characteristics of Bifidobacterium longum strains isolated from human sources, and to examine these characteristics in detail using genomic and phenotypic techniques. One strain in particular Bifidobacterium longum DPC 6315 was the main focus of the thesis and this strain was used in both the manufacture of yoghurt and an animal study. In total, 38 B. longum strains, obtained from infants and adults, were assessed in vitro for the selected probiotic traits using a combined phenotypic and molecular approach. Differentiation of the 38 strains using amplified ribosomal DNA restriction analysis (ARDRA) into subspecies indicated that of the 38 bifidobacterial strains tested, 34 were designated B. longum subsp. longum and four B. longum subsp. infantis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibioticassociated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. The main etiological agent of C. difficile-associated diarrhea (CDAD) is perturbations to the gut microbiota by broad-spectrum antibiotics. Recently, thuricin CD, a two-peptide narrow spectrum sactibiotic bacteriocin with potent activity against C. difficile has been discovered. It is produced by Bacillus thuringiensis DPC6431. The efficacy of thuricin CD against a range of C. difficile clinical isolates has been determined in the form of minimum inhibitory concentration (MIC) values and compared to metronidazole, vancomycin, ramoplanin and actagardine in this thesis. Furthermore, by assessing paired combinations of the above-mentioned antimicrobials, it was determined that ramoplanin and actagardine function in a synergistic manner against the majority of C. difficile isolates. The functions of the genes in the thuricin CD gene cluster have also been elucidated by cloning the cluster and expressing thuricin CD in a heterologous Bacillus subtilis host and are described herein. In addition, the immunity mechanisms employed by the B. thuringiensis DPC6431 producer to protect itself from the antimicrobial actions of thuricin CD have also been elucidated. It has been shown that a small immunity peptide, TrnI, is involved in thuricin CD immunity, most likely by intercepting the thuricin CD peptides and/or blocking their access to the thuricin CD receptor. This immunity peptide and also the ABC-transporter system TrnFG serve to protect the B. thuringiensis host against thuricin CD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite a multitude of environmental stressors, the Varroa mite is still regarded as the greatest cause of honey bee mortality in its invaded range. Breeding honey bees that are resistant to the mite is an important area of research. This thesis aimed to gain a better understanding of the grooming and hygienic behaviours of Russian honey bees (RHB). The effect of a break in the synchrony of a mite’s life cycle on reproductive success was tested through brood inoculation experiments. Mites released by hygienic behaviour and forced to enter a new cell are less likely to lay male offspring. Through laboratory cage assays it was found that daughter mites are more susceptible to grooming behaviour. A new method of marking Varroa mites was developed which would enable a single cohort of mites to be followed after inoculation. A strong brood removal trait was noticed in RHB colonies, therefore they were tested for Varroa sensitive hygienic (VSH) behaviour. RHB demonstrated levels of VSH as high as the USDA line bred specifically for this behaviour. In addition the same QTL found to be responsible for the trait in VSH bees, was associated with VSH in RHB stock. Previous work showed that the ratio of older mites to total trapped mites (O/T) in the debris of honey bee colonies demonstrated the strongest association with colony infestation. This research showed that O/T is associated with VSH and brood removal behaviour. In addition, bees that displayed high levels of VSH in this study were also more likely to spend a longer amount of time grooming in laboratory assays. This indicates that both grooming and hygienic behaviours play important roles in the resistance of RHB stock. Their likelihood to be expressed by other stocks is discussed and recommendations for further research are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis was undertaken to investigate the relevance of two bacterial isoprenoid biosynthetic pathways (Mevalonate (MVAL) and 2-C-methyl-D-erythritol 4-phosphate (MEP)) for host-microbe interactions. We determined a significant reduction in microbial diversity in the murine gut microbiota (by next generation sequencing) following oral administration of a common anti-cholesterol drug Rosuvastatin (RSV) that targets mammalian and bacterial HMG-CoA reductase (HMG-R) for inhibition of MVAL formation. In tandem we identified significant hepatic and intestinal off-target alterations to the murine metabolome indicating alterations in inflammation, bile acid profiles and antimicrobial peptide synthesis with implications on community structure of the gastrointestinal microbiota in statin-treated animals. However we found no effect on local Short Chain Fatty Acid biosynthesis (metabolic health marker in our model). We demonstrated direct inhibition of bacterial growth in-vitro by RSV which correlated with reductions in bacterial MVAL formation. However this was only at high doses of RSV. Our observations demonstrate a significant RSV-associated impact on the gut microbiota prompting similar human analysis. Successful deletion of another MVAL pathway enzyme (HMG-CoA synthase (mvaS)) involved in Listeria monocytogenes EGDe isoprenoid biosynthesis determined that the enzyme is non-essential for normal growth and in-vivo pathogenesis of this pathogen. We highlight potential evidence for alternative means of synthesis of the HMG-CoA substrate that could render mvaS activity redundant under our test conditions. Finally, we showed by global gene expression analysis (Massive Analysis of cDNA Ends (MACE RNA-seq) a significant role for the penultimate MEP pathway metabolite (E)-4-hydroxy-3-methyl-2-but-2-enyl pyrophosphate (HMBPP) in significant up regulation of genes of immunity and antigen presentation in THP-1 cells at nanomolar levels. We infected THP-1 cells with wild type or HMBPP under/over-producing L. monoctyogenes EGDe mutants and determined subtle effects of HMBPP upon overall host responses to Listeria infection. Overall our findings provide greater insights regarding bacterial isoprenoid biosynthetic pathways for host-microbe/microbe-host dialogue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bifidobacteria are Gram positive, anaerobic, typically Y-shaped bacteria which are naturally found in the digestive tract of certain mammals, birds and insects. Bifidobacterium breve strains are numerically prevalent among the gut microbiota of many healthy breast-fed infants. The prototypical B. breve strain UCC2003 has previously been shown to utilise numerous carbohydrates of plant origin. Various aspects of host-derived carbohydrate metabolism occurring in this bacterium will be described in this thesis. Chapter II describes B. breve UCC2003 utilisation of sialic acid, a nine-carbon monosaccharide, which is found in human milk oligosaccharides (HMOs) and the mucin glycoprotein. B. breve UCC2003 was also shown to cross-feed on sialic acid released from 3’ sialyllactose, a prominent HMO, by the extracellular sialidase activity of Bifidobacterium bifidum PRL2010. Chapter III reports on the transcriptional regulation of sialic acid metabolism in B. breve UCC2003 by a transcriptional repressor encoded by the nanR gene. NanR belongs to the GntR-family of transcriptional regulators and represents the first bifidobacterial member of this family to be characterised. Chapter IV investigates B. breve UCC2003 utilisation of mucin. B. breve UCC2003 was shown to be incapable of degrading mucin; however when grown in co-culture with B. bifidum PRL2010 it exhibits enhanced growth and survival properties. A number of methods were used to investigate and identify the mucin components supporting this enhanced growth/viability phenotype. Chapter V describes the characterisation of two sulfatase-encoding gene clusters from B. breve UCC2003. The transcriptional regulation of both sulfatase-encoding gene clusters was also investigated. The work presented in this thesis represents new information on the metabolism of host-derived carbohydrates in bifidobacteria, thus increasing our understanding of how these gut commensals are able to colonise and persist in the gastrointestinal tract.